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ABSTRACT

eBPF has seen major industry adoption by enterprises to enhance
observability, tracing, and monitoring by hooking at different points
in the kernel. However, since the kernel is a critical resource, eBPF
can also pose as a threat if misused, potentially leading to priv-
ilege escalation, information leaks and more. While effective to
some extent, existing mitigation strategies like interface filtering
are coarse-grained and often over-restrictive. We propose BPFflow,
a flexible framework for the system administrator to define policies
that specify sensitive data sources, trusted sinks and permitted
flows between them. These policies are enforced by an Informa-
tion Flow Control (IFC) system within the eBPF verifier to track
the propagation of sensitive data to prevent unauthorized leakage
to userspace or any other untrusted sinks without any runtime
overhead.
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1 INTRODUCTION

eBPF is a Linux kernel extension technology which operates by
attaching user-defined programs to specific kernel hook points with
minimal overhead, which makes them an ideal choice for observ-
ability, tracing, monitoring, and network security. Cilium, Falco,
Pixie, Tetragon, and Pyroscope [2-6] are some of the many tools
which leverage eBPF to deliver advanced observability and security
capabilities. Furthermore, large enterprises and projects such as
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Netflix, Google, Android, and Microsoft rely on eBPF to optimize
performance and enhance their system monitoring capabilities [10].

While eBPF’s power makes it indispensable for observability
and security, it also presents significant risks. Due to its deep inte-
gration with the kernel, eBPF can be exploited by malicious actors
to perform harmful actions. Examples of such exploits include
information theft, denial of service (DoS) attacks, process hijack-
ing, tampering with shared data stores, and deploying stealthy
rootkits that evade traditional detection mechanisms [11]. The
severity of these threats is evident from both research and real-
world incidents [15] and the key to these threats is the misuse
of a set of trusted kernel interfaces like eBPF helper functions
and kfuncs. bpf_probe_write_user, bpf_override_return and
bpf_send_signal [35] are some examples of helper functions which
can facilitate attacks such as privilege escalation by overwriting re-
turn addresses in userspace, hijacking kernel function behavior and
triggering signal handlers to induce unintended behavior. Prior re-
search [1] has looked into preventing the usage of helper functions
by generating policies based on program semantics that allow or
deny eBPF programs. However, functions such as bpf_probe_read
that can be used maliciously for accessing and leaking sensitive
kernel data are also essential for benign applications like profiling
and performance monitoring. Therefore, a key challenge is to dis-
tinguish between benign and malicious use of eBPF programs while
ensuring that legitimate use is not overly restricted. We propose
BPFflow, an information flow control system leveraging labels to
enforce fine-grained policies for eBPF programs. The main contri-
butions of the paper are as follows:

e We observe that seemingly benign eBPF programs can pose
risks to production systems, as slight modifications may
enable them to leak data to untrusted sinks.

e We introduce BPFflow, a declarative policy language that
assigns and propagates labels throughout an eBPF program
to enforce information flow control.

e Our system provides a way to express fine-grained policies
per eBPF program, allowing system administrators to follow
least-privilege best practices without imposing unnecessary
constraints on legitimate programs.

2 THREAT MODEL

While eBPF programs have been previously used for malicious pur-
poses, we focus on scenarios where a system administrator employs
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Helper Function Purpose

bpf_probe_write_user
bpf_probe_read_user
bpf_override_return
bpf_send_signal

Write user space memory
Read user space memory
Alter kernel function retval
Send SIGKILL to any process

Table 1: Some commonly used helper functions in malicious
eBPF programs

third-party eBPF programs. We assume that the system administra-
tor is trusted not to write their own malicious eBPF programs, and
all programs will pass the verifier, which we consider bug-free for
the purposes of this discussion. We also assume that all kernel-side
protections still exist and the adversary cannot modify the kernel
(e.g., modules) except for eBPF programs. The eBPF programs may
be used for monitoring and observability for performance insights,
security features such as intrusion detection (IDS) or intrusion pre-
vention (IPS), and networking enhancements to efficiently route and
manage traffic. However, malicious eBPF programs could originate
from any of the following:

o A malicious third-party application or external party.
e A supply chain attack on a third-party or external-party
application.

Under this threat model, numerous attacks have been demon-
strated and researchers as well as industry experts have become in-
terested in understanding potential malicious use cases of eBPF [12,
13, 26, 28, 30]. The Linux Foundation also conducted a comprehen-
sive security threat modeling of eBPF [11], highlighting possible
threats such as malicious use of certain eBPF helpers (outlined
in Table 1), sensitive information leakage, supply chain attacks,
denial-of-service (DoS), rootkits, and detection evasion. One no-
table example is BPFDoor [7], a stealthy backdoor identified by PwC
that leveraged eBPF to bypass firewall rules and evade forensic de-
tection. Symbiote [32], on the other hand was able to collect user
data and exfiltrate it to DNS servers. Pamspy [27] is another known
proof-of-concept credential dumper that targets the Pluggable Au-
thentication Module (PAM) framework in Linux by hooking into
PAM-related function calls and silently collecting and exflitrating
authentication credentials.

2.1 Example: Weaponizing Observability

To effectively steal sensitive information, two conditions must be
met: (1) there must be a source of sensitive data, and (2) there must
be a channel through which the data can be exfiltrated. The core
functionality of eBPF inherently satisfies both requirements by
allowing programs to hook into the kernel and exfiltrate sensitive
information through a map (explicit flow) or influence program
behavior through control based decisions which depend on sensitive
data (implicit flow).

We take a sample eBPF program from Pixie [4], a legitimate
open-source observability tool for Kubernetes applications that
utilizes eBPF for monitoring. With slight modification, as shown
in Figure 1 (indicated by lines marked with '+’), we show that
the program can be extended to access sensitive information. For
example, instead of accessing the start_boottime to use as an
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SEC("tracepoint/sched/sched_process_exec")

int trace_exec(struct
trace_event_raw_sched_process_exec *ctx) {
struct task_struct =*task;

- struct task_struct =*group;

- u64 start_time;
struct cred *cred;
struct request_key_auth =xauth;

// Step 1: Get pointer to current task struct
task = (struct task_struct =)
bpf_get_current_task();

// Step 2: Read sensitive pointers from task
struct

- bpf_probe_read(&leader, sizeof(leader), &task
->group_leader);

- bpf_probe_read(&start_time, sizeof (start_time)
, &leader->start_boottime);

+ bpf_probe_read(&cred, sizeof(cred), &task->
cred);

+ bpf_probe_read(&auth, sizeof (auth), &cred->
request_key_auth);

// Step 3: Store data outside program

- bpf_perf_event_output(ctx, &perf_buf,
BPF_F_CURRENT_CPU, &start_time, sizeof(
start_time));

+ bpf_perf_event_output (ctx, &perf_buf,
BPF_F_CURRENT_CPU, &cred, sizeof(cred));

+ bpf_perf_event_output (ctx, &perf_buf,
BPF_F_CURRENT_CPU, &auth, sizeof (auth));
return 90;

Figure 1: Small changes to a benign Pixie program can leak
potentially sensitive data

ID, the modified program now accesses the request_key_auth field
within the credential structure of the task struct. Like the original,
the modified program passes the verifier. This small change could
easily happen during a supply-chain attack and might not be noticed
by a system administrator, since the overall structure of the program
and the eBPF helper functions did not change, but only the specific
data field accessed.! The core issue here is that currently there is
no robust mechanism available to detect malicious eBPF hooks or
generate alerts when sensitive data outside the intended scope of
an eBPF program is accessed.

2.2 Present Security Mechanisms are not
Enough

While the eBPF verifier, ensures safety by preventing unsafe opera-
tions such as invalid memory access or unbounded loops, it lacks
awareness of the sensitivity or confidentiality of the data being
accessed and semantics of the data flowing through the program.

!cred in Figure 1 is shown directly as a struct field name for illustrative purposes; an

attacker could instead use offsets to sensitive struct fields, making such access patterns
harder to detect.
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Furthermore, even with manual monitoring of hook points using
Linux commands and tools, it is easy to lose track or fail to prevent
sensitive information leakage before it occurs. Other approaches
that involve limiting programs solely based on helper functions
are coarse-grained and often end up restricting more functionality
than intended.

3 BPFFLOW

Figure 2 depicts the high-level design of BPFflow. As a verifier
component, it operates at load time, which ensures early rejection
of a potentially malicious eBPF program with no effect on runtime
performance. There are two major components of our design: the
policy specification, which defines what is allowed, and the IFC
static analysis engine, which enforces the defined policies.

3.1 Policy Specification

In our design, the system administrator specifies policies for each
eBPF program using a human-readable JSON format that defines
the sources of information for an eBPF program. These sources fall
into two categories: data access and kernel interfaces such as helper
functions and kfuncs.

The policies use per-field labels: allow, deny, or sensitive. The
allow label refers to data that may be accessed freely, while the
deny label refers to data that the program must not access. The
sensitive label is used for data that may be accessed but must not
be exfiltrated.

Listing 1 shows an example of the policy for the Pixie program
discussed in Section 2.1. The policy defines that the program is
allowed to access the group_leader and start_boottime fields
within the task_struct of the running task, while the cred field
is marked as sensitive. Additionally, the policy assigns labels to
helpers to define per-helper access levels, where sensitive label
refers to helpers that return sensitive data. The policy specification
follows a deny-by-default model, which means if a data field or
helper function usage is not explicitly allowed in the policies, then
access to it will be denied. By doing this, we inherently implement
the principle of least privilege, ensuring that an eBPF program can
only interact with data that it has been explicitly authorized to
access.

To provide flexibility and simplify policy management for system
administrators, we also introduce predefined policy groups that can
be assigned to eBPF program types like tracing and networking.
These group policies grant reasonable default access to commonly
used interfaces (e.g., helpers for retrieving process IDs) and non-
sensitive data structures relevant to the program type.

3.2 IFC Static Analysis Engine

IFC static analysis engine performs static analysis on the eBPF
bytecode by iterating through each instruction in the eBPF bytecode
to generate a Control Flow Graph (CFG). We track data flow through
each register and propagate taints by modeling an in-state and out-
state with each basic block and use a worklist-based algorithm to
propagate states along the CFG by merging states. At each data
access, we consult the defined policy and if an access is disallowed,
the program is rejected. Otherwise, the register is labeled (e.g.,
sensitive) and tracked through the program. Label propagation
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1 {

2 "program": {

3 "name": "pixie.kern",

4 "type": "observability",

5 "hookpoint":

6 "tracepoint/sched/sched_process_exec"
7 1

8 "data_access": {

9 "task_struct": {

10 "allow": ["group_leader",

— "start_boottime"],

11 "sensitive": ["cred"],

12 "description": "Access to the
— task_struct pointer"

13 }

1 1

15 "helper_access_profile": {

16 "bpf_get_current_task": "allow",
17 "bpf_get_stackid": "allow",

18 "bpf_probe_read": "sensitive",

19 "bpf_map_delete_elem": "deny",

20 "bpf_get_current_pid_tgid": "allow",
21 "bpf_perf_event_output": "allow"
22 }

23 }

Listing 1: An example of the policy for pixie

handles both explicit and implicit flows. For explicit flows, register
assignments carry over labels:
x = kernel_data;
y = x; // y inherits label from x
For implicit flows, we taint successor blocks of conditionals that
depend on sensitive values:
if (secret)
y =1; // y is tainted
The unified taint propagation mechanism tracks all values—directly
or indirectly—derived from sensitive data, and rejects programs at
load time if any such value reaches an untrusted sink defined by
policy.
We have developed a prototype userspace implementation in
Python to audit untrusted eBPF programs to ensure they only access
what is expected of them.

4 RESULTS & EVALUATION

In this section, we evaluate BPFflow to understand how well it
achieves its goal of preventing sensitive data leakage through un-
trusted eBPF programs. We aim to answer the following questions:
(1) Security and policy enforcement: Can BPFflow accurately
prevent unauthorized data access and helper functions? Is it
useful for detecting sensitive leakage?
(2) Real world applicability: Can BPFflow identify and pre-
vent loading rootkits?
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Figure 2: Information Flow Control System in eBPF

(3) System impact: What is the impact of BPFflow on the pro-
gram’s load-time performance?

4.1 Evaluation of BPFflow

For this evaluation, we assume the system administrator has a basic
understanding of observability-type eBPF programs. To construct
representative policies for observability programs, we gathered
examples from open-source repositories including libbpf-tools [29],
Beyla [18], and Pixie [4]. Some of these programs include cachestat,
cpufreq, llcstat, mountsnoop, and watcher that monitor performance,
events and cache activity within the kernel. Using these programs,
we formulated an observability group policy specifying allowed
hookpoints, allowed kernel data fields, and permissible helper func-
tions. By extension, these programs pass the BPFflow check. In the
policy, we explicitly tagged fields that may be sensitive, and in this
case credentials or data read from user-space.

To evaluate policy enforcement by BPFflow, we compiled a set
of eBPF programs from open-source repositories [28], shown in Ta-
ble 2. These include known malicious programs tagged as "bad" due
to their misuse of helper functions that could leak or alter kernel
state. Additionally, we included programs not typically considered
malicious but designed to leak sensitive kernel data beyond per-
mitted observability scopes through map writes, debug outputs, or
return values. All of these programs are run under the observability
group policy described above, simulating the case in which the
system administrator is tricked into running them.

We conducted two tests on each program. The first was a stan-
dard verifier check, compiling and loading the program into the
kernel without IFC measures. Most programs passed the verifier ex-
cept textreplace, which was rejected due to out-of-bounds memory
access.

In the second test, programs were evaluated using BPFflow. BPF-
flow validates each hookpoint attachment (such as data read from

the ctx argument in R1), kernel data access (from context or re-
turn from helper functions that return kernel data), and helper
function usage against the defined observability policies. For in-
stance, the capturelsm program violates policy by attaching to the
1smfilemkdir hookpoint, which was not permitted and outside
the scope for observability. Known malicious helper functions are
explicitly blocked, except bpf_probe_read, which is widely used
for legitimate observability purposes. Hence, programs like alter-
filepath that uses bpf_probe_write to alter an access file path
violates the policy. In the case of our modified pixie from Figure
1, the program accesses the credential field of the task struct and
tries to store it in a map which violates sensitive data leaving the
program.

As we can see from Table 2, all the evaluated programs fail
the BPFflow check from at least one of the violations discussed
above. These findings demonstrate BPFflow’s capability to detect a
wide range of violations that are not detected by the verifier alone
and shows how BPFflow is able to effectively place constraints on
what data is accessed by the eBPF programs by enforcing policies.
They also highlight the importance of tracking sensitive data flow
explicitly, as relying only on helper blacklisting, and data access
would miss several realistic attacks. Note that while the policies
here are tailored to observability programs, these policies can be
as flexible or as strict as possible for other eBPF program types.
Policies can also be tied to a particular eBPF program as opposed
to eBPF program type.

4.2 Evaluation on Real-World Rootkits

To evaluate whether BPFflow correctly detects and blocks real-
world threats, we tested it against known malicious eBPF rootkits.
Specifically, we evaluated three rootkits: boopkit, bpfdoor, and
pamspy, of which the latter two were described earlier in Section 2.
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Program Description Verifier BPFflow IFC Violation
Hookpoint Helper Data Access Data Leakage
exechijack Hijacks process and sends a message to a map 4 X X
pidhide Hides process from directory listing 4 X X X
sudoadd Elevates user privileges by editing sudoers v X X X
textreplace Finds and replaces a target string X X X X
alterfilepath ~ Alters file access path via context manipulation v X X
writeblocker  Blocks write syscalls for specific processes v X X
logflags Logs syscall arguments and trace flags v X X
filtersock Filter sockets and leaks sensitive data through return path v X X
logswitch Logs sensitive context values v X X
capturelsm Monitors LSM mkdir events v X X
leaktaskaddrs Leaks task struct address to map v X X
loghardids Leaks hardcoded sensitive fields v X X
xdpOOB Performs out-of-bounds access on XDP data 4 X X
pixiemal Accessing and leaking credentials fields outside of its scope v X X

Table 2: Evaluation of security and policy enforcement of BPFflow

During our evaluation, each rootkit underwent auditing through
BPFflow’s IFC engine. All three rootkits were successfully prevented
from attaching to the kernel due to two primary enforcement mech-
anisms:

First, since BPFflow employs a "deny-by-default” policy model,
these malicious programs lack explicit policies defined by the sys-
tem administrator, causing immediate rejection upon attempted
loading. Secondly, in the case where these programs attempt to
impersonate a legitimate program type (i.e observability) using the
group policies, they were rejected because of hookpoint context
access not specified in the policies. Furthermore, even if these hook-
points are specified in the policies, the rootkits still trigger data ac-
cess or data leakage violations. This occurs because these malicious
programs inevitably attempt to access kernel data fields not explic-
itly permitted in legitimate policies or attempt to exfiltrate sensitive
kernel data via helper functions such as bpf__map_update_elemand
bpf_trace_printk.

Table 3 summarizes the results of our evaluation against these
rootkits, demonstrating BPFflow’s robustness in detecting and
blocking realistic eBPF-based threats.

Rootkit Hookpoint Data Leak IFC Check
bpfdoor Socket Filter Backdoor payload X
(TCP)
pamspy  Uretprobe User credentials X
(PAM)
boopkit Tracepoint  Packet data X
(TCP)

Table 3: Detection of Real-World eBPF Rootkits by IFC En-
forcement

These results clearly demonstrate BPFflow’s practical effective-
ness in blocking real-world rootkits by enforcing policies on eBPF
programs.

4.3 Performance Overhead

To assess the performance impact of integrating Information Flow
Control (IFC) static analysis into the eBPF pipeline, we benchmark
our Python prototype implementation using hyperfine [16] to simu-
late warmup runs. We observed that BPFflow introduces a one-time
overhead of 55-62 ms at load time, with no runtime overhead. How-
ever, we expect significant performance gains if our implementation
is ported to the in-kernel verifier, since we can piggyback on its
existing instruction walk and CFG logic. Additionally, a C-based
implementation would be substantially faster than our current
Python-based approach.

5 DISCUSSION & FUTURE WORK

Policy specification helps prevent eBPF programs from leaking sen-
sitive data from the kernel. However, it depends on how well the
system administrator understands the eBPF subsystem to be able
to define these policies correctly. Without this understanding, sys-
tem administrators may write policies that grant excessive access
or ones that are too strict and break legitimate programs. We be-
lieve that policy groups, combined with metadata and provenance
provided by eBPF developers, can reduce the burden on system
administrators and improve scalability.

A promising direction for future research is to extend the frame-
work to support runtime classification and declassification of data.
For example, an eBPF program could classify packet data as sensitive
based on its contents (e.g., detecting a password field) and subse-
quently declassify it after applying some form of hash/encryption.
The proposed approach can also be extended to support dynamic
context-dependent flow restrictions. For instance, a kernel pointer
may be logged only if the process belongs to a trusted cgroup. This
would allow enforcing fine-grained, conditional policies beyond
static label checking. Additionally, it is important to note that the
static IFC analysis does not detect or prevent all forms of malicious
eBPF attacks. For instance, it cannot detect side-channel attacks that
leak information by measuring execution time or CPU behavior.
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6 RELATED WORK

Information flow control or IFC, as a concept started with some
early work based on data confinement around the mid-1970s [19].
Later Denning and Denning [8, 9] formalized IFC policies using a
lattice structure combined with static analysis. Building on these
principles, Myers and Liskov [25] introduced a decentralized IFC
model, enabling applications to classify and declassify their own
data rather than relying on a centralized authority. Several prior
systems, have implemented dynamic taint tracking to enforce IFC
at the kernel level [24, 36] and leveraged labels to limit information
flow [17, 33, 37].

In the context of eBPF, recent research has explored both soft-
ware and hardware features to enhance eBPF security through spa-
tial isolation and also dynamic sandboxing. MOAT [23] leverages
Intel Memory Protection Keys (MPK) to partition kernel memory,
while SafeBPF [21] extends this approach by combining software-
based fault isolation (SFI) with ARM’s Memory Tagging Exten-
sion (MTE) to confine eBPF programs within sandboxed regions.
SandBPF [20], in contrast, utilizes a software-based dynamic sand-
boxing mechanism to isolate unprivileged eBPF programs. While
these techniques mitigate memory corruption risks, they primarily
focus on enforcing spatial isolation rather than controlling informa-
tion flow between sensitivity domains. Furthermore, they rely on
hardware-specific features which restricts their applicability across
different architectures.

Some previous work [14, 31, 34] have developed soundness spec-
ifications for the eBPF verifier and also improved its efficiency.
Other efforts [22, 31] have focused on improving the functional
correctness of the verifier. Tetragon[6] uses policies operating at
the syscall and LSM hook granularity to passively audit BPF-related
activity in a Kubernetes cluster. Despite these advancements, the
approaches fail to address support for information flow control.

7 CONCLUSION

While the eBPF verifier ensures that programs do not crash, hang,
or perform invalid memory accesses, it does not prevent them from
accessing or misusing sensitive kernel data. Our work, BPFflow, ad-
dresses potential malicious usage of BPF programs. We supplement
the current verification process with additional security guaran-
tees by leveraging fine-grained policies enforced by an information
flow control framework. The framework tracks the propagation
of sensitive data through registers, stack, and helper calls in eBPF
programs to ensure confidential kernel data cannot be leaked to
any untrusted sinks.

Overall, this work moves us closer to building safer and more
trustworthy systems by giving system operators better tools for
controlling how kernel data is accessed and handled by eBPF pro-
grams.
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