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Abstract
How to obtain complete and high-resolution bathymetry is an important re-
search topic in the underwater domain. However, existing methods have cer-
tain shortcomings. Multibeam echosounder (MBES) can produce narrow beam
range readings of the seafloor, but there is an interval between every two beams
(between 10cm to 10m), and the resolution is low. Sidescan sonar can mea-
sure the seafloor in much higher resolution (down to below 1cm), but it is
difficult to convert the sidescan into the bathymetry. Although several meth-
ods allow us to use physical models to estimate bathymetry from the sides-
can, these methods are computationally difficult due to the growing amount of
data. To bridge the gap, we propose a neural network-based system that can
efficiently and accurately reconstruct high-resolution bathymetry from low-
resolution bathymetry and the sidescan. In particular, the multi-resolution in-
ference system can (1) efficiently extract the features of the sidescan sonar map;
(2) reconstruct the high-resolution bathymetry using the extracted features and
the input low-resolution bathymetry. Evaluations demonstrate that the infer-
ence system can reconstruct high-resolution bathymetry under different input
settings.
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Sammanfattning
Hur man får fram fullständig och högupplöst batymetri är ett viktigt forsk-
ningsämne inom undervattensdomänen. Befintliga metoder har dock vissa bris-
ter. Multibeam ekolod (MBES) kan ge avläsningar av havsbotten med smalt
strålområde, men det finns ett intervall mellan varannan strålar (mellan 10 cm
till 10 m), och upplösningen är låg. Sidescan ekolod kan mäta havsbotten i
mycket högre upplösning (ned till under 1 cm), men det är svårt att omvandla
sidoscanningen till batymetri. Även om flera metoder tillåter oss att använ-
da fysiska modeller för att uppskatta batymetri från sidoskanningen, är dessa
metoder beräkningssvåra på grund av den växande mängden data. För att över-
brygga klyftan föreslår vi ett neuralt nätverksbaserat system som effektivt och
exakt kan rekonstruera högupplöst batymetri från lågupplöst batymetri och si-
doskanningen. I synnerhet kan flerupplösnings-inferenssystemet (1) effektivt
extrahera egenskaperna hos sidoavsöknings-ekolodskartan; (2) rekonstruera
den högupplösta batymetrin med hjälp av de extraherade funktionerna och den
ingående lågupplösta batymetrin. Utvärderingar visar att inferenssystemet kan
rekonstruera högupplöst batymetri under olika ingångsinställningar.
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Chapter 1

Introduction

Bathymetry is to measure the underwater depth of ocean floors. By measuring
the seabed topography, many forms of underwater research and applications
can be carried out. Among them, the use of multibeam echo sounder systems
(MBES) and sidescan sonar systems is commonly used.

Multibeam echo sounder systems use a set of transmitters to transmit a wide
coverage of sound waves to the ocean floor and use a set of receivers to re-
ceive the reflected waves. The transmitted sound waves and the reflected sound
waves will intersect vertically, and the depth values of the seabed in the per-
pendicular plane can be measured. The system can accurately detect under-
water objects along the route by periodically transmitting sound waves. We
are then able to draw a 3D feature map of the seabed topography by process-
ing the collected data. The advantage of the multibeam echo sounder systems
is that the bathymetry on the vertical plane can be measured with high pre-
cision. The disadvantage is that there is a large interval between the vertical
planes, and the detailed information of the terrain is missing in these intervals.

Sidescan sonar systems use reflections of sound waves to obtain images of
underwater topography. The system sends sound waves to the seabed from
the transmitter to both sides. Due to the different shapes and materials of the
underwater terrain, the reflected sound waves have different intensities. The
sidescan sonar system will then process the intensity signals into 2D grayscale
images with different shades. Combined with the underwater vehicle’s po-
sition and speed information, we are able to obtain features describing the
underwater terrain within the detection range. The advantage of the sidescan
sonar system is that it can perform a wide range and high-resolution underwa-
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2 CHAPTER 1. INTRODUCTION

ter terrain inspections. The disadvantage is that the intensity image generated
by the sidescan is different from the bathymetry, and there is no direct conver-
sion between the two images.

Although there are several methods that allow us to use physical models to
estimate bathymetry from the sidescan, these methods are computationally
difficult due to the growing amount of data. Therefore, we urgently need a
method to obtain high-resolution bathymetry with existing equipment.

To leverage the rich information provided by the sidescan, we propose a neu-
ral network-based system that can efficiently and accurately reconstruct high-
resolution bathymetry from low-resolution bathymetry and the sidescan, as-
suming that our autonomous underwater vehicle (AUV) can obtain both low-
resolution bathymetry and the sidescan at some location.

1.1 Challenges
There are two main challenges in designing such a system: (1) We need to
take advantage of the detailed information contained in the sidescan. Although
the sidescan cannot be directly converted to bathymetry, the sidescan contains
full details describing the terrain. With these details, we can recover high-
resolution (equal to the resolution of the sidescan) bathymetry. Therefore,
the system needs to be able to accurately extract the features from the sides-
can, which is the key to solving the problem. We also need to correspond
the bathymetry and sidescan according to the position coordinates, so that the
complete bathymetry can be obtained through batch reconstruction. (2) We
do not have ready-made datasets. To train the neural network model, we need
data containing low-resolution bathymetry, high-resolution bathymetry, and
high-resolution sidescan. The triples need to be able to correspond in position
coordinates. We also need to record the parameters of the AUV when gath-
ering data. A complete dataset is essential when testing and evaluating the
system’s performance.

1.2 Contribution
In this project, the main contribution is: We design a multi-resolution infer-
ence system that can extract features in the sidescan and rely on these features
to reconstruct high-resolution bathymetry on low-resolution bathymetry. The
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design of the neural network structure is as follows: the neural network adopts
a recursive structure to extract features in the sidescan and uses shortcuts be-
tween neighboring layers to speed up learning the residual between the pre-
diction and the ground truth. In particular, we use interpolated low-resolution
bathymetry to provide a positional reference for the reconstruction.

1.3 Evaluation
We performed comprehensive evaluations of the multi-resolution inference
system on the multi-resolution dataset from multiple aspects. The evaluation
results demonstrate that: (1) The system can reconstruct bathymetry well. The
system achieves 38.5328 PSNR score on the test set, which is a 13% improve-
ment over interpolation-based methods. (2) The entire system pipeline is ef-
ficient. The average reconstruction time is 1826 ms. The CPU usage of the
system during reconstruction is up to 5243 mib. Based on the above exper-
imental results, our system can reconstruct high-resolution bathymetry well
and efficiently.

1.4 Social Benefits, Ethics and Sustainabil-
ity

In this section, we report the problems remain to be solved in this field and
motivate our work accordingly.

1.4.1 Social Benefits
From the perspective of social benefits, as underwater terrain detection plays
a very important role in ocean engineering, it would definitely promote eco-
nomic development. Seabed measuring is widely used and is closely related
to energy extraction. Not only that, seabed measuring can promote the ad-
vancement of maritime navigation technology and has a significant influence
on both military and business applications. Here we listed a few representative
application scenarios. First, terrain detection helps us conduct marine scien-
tific research. Second, underwater terrain detection can help the work of the
underwater navigation system, helping the safe navigation of both surface and
underwater vehicles.Third, a complete and detailed seabed topographic map
can help us better plan the laying of underwater pipelines. Fourth, detecting
seabed topography will help us develop seabed resources, such as oil and gas
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exploration and mineral mining. Therefore, it is necessary to understand the
changes in seabed topography in detail and draw detailed bathymetry maps,
which is one of the main motivations of our work.

1.4.2 Ethics
For ethical aspects, underwater terrain detection also plays an important role in
environmental monitoring and protection. When exploiting seabed resources
(such as natural gas, oil, and other energy resources), it is an essential prereq-
uisite to accurately describe the topography of the seabed. Otherwise, we may
not be able to produce accurate estimates of the distribution of seafloor re-
sources, and we are likely to have serious consequences in the mining process.
Improper resource exploitation may lead to environmental pollution (such as
oil spills). More seriously, inappropriate resource exploitation may lead to
serious production safety accidents. Good underwater terrain detection can
help us exploit resources more safely and rationally, thereby protecting ma-
rine resources, preventing marine pollution, maintaining ecological balance,
and protecting the safety of maritime workers.

1.4.3 Sustainability
From the angle of sustainability, our work aims at using limited resources to
achieve satisfying performance in underwater terrain detection. At present,
seabed measuring technology based on AUVs has emerged rapidly. However,
detecting seafloor topography with a large number of sensors has a high cost.
First, underwater detectors are expensive. Second, if high-precision data is
required, we may need more sensors to collect data. This leads to very high
energy consumption. Third, bathymetric data processing requires high man-
power. All the while, we need to manually preprocess the raw data. This
results in very slow fetching of data that can be used. For the above reasons,
we propose a scheme in this project that uses a machine learning approach to
reconstruct high-quality, high-precision bathymetry from data obtained from
existing sensors.
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Background and Related Work

2.1 Underwater Topographical Survey
The underwater topographical survey is the work of measuring underwater
landscape and features. The results of underwater topographic surveys are
usually underwater topographic maps (in the form of bathymetry). Compared
to the topographical study of land, it is more complicated because AUV (Au-
tonomous Underwater Vehicle) needs to be navigated in water and thus needs
to have strong stability. Among them, the sidescan sonar and the multibeam
echosounder (MBES) are two widely used equipment mounted on AUV.

Sidescan Sonar. The sidescan sonar is a kind of underwater exploration
equipment that uses sound wave reflection to provide a horizontal image of the
seabed. It was first studied by German scientist Julius Hagemann who worked
in the Navy Marine Defence Laboratory of the United States and developed
the prototype of the sidescan sonar in 1958 [1]. The side scan sonar system is
mainly composed of four parts: the positioning system, the rotating drum, the
central computer, and the control unit. Sidescan sonar systems use reflections
of sound waves to obtain images of underwater topography. The system sends
sound waves to the seabed from the transmitter to both sides. Due to the differ-
ent shapes and materials of the underwater terrain, the reflected sound waves
have different intensities. The sidescan sonar system will then process the in-
tensity signals into 2D grayscale images with different shades. Combined with
the underwater vehicle’s position and speed information, we are able to obtain
features describing the underwater terrain within the detection range.

Multibeam Echosounder. The echosounder uses sound waves to measure the
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distance from the vehicle to the bottom. Multibeam echo sounder systems use
a set of transmitters to transmit a wide coverage of sound waves to the ocean
floor and a set of receivers to receive the reflected waves. The transmitted
sound waves and the reflected sound waves will intersect vertically, and the
depth values of the seabed in the plane perpendicular can be measured. The
system can accurately and efficiently detect underwater objects along the route
by periodically transmitting sound waves. We can draw a 3D feature map of
the seafloor topography by processing the collected data. The advantage of the
multibeam echo sounder systems is that the bathymetry on the vertical plane
can be measured with high precision. The disadvantage is that there is a large
interval between the vertical planes, and the detailed information of the terrain
is missing in these intervals.

Prior to this project, we already tried to apply CNN-based method to infer
depth contours from sidescan. In the paper [2], the author trained two pixel-
to-pixel CNNs for regression and a conditional GAN for calculating the loss.
The author concluded that it is possible to generate bathymetry using sidescan
sonar images. However, the performance is not optimized due to the limited
number of samples. Also, we observed sharp changes in the rocky areas, which
can be further improved.

2.2 Feature Extraction and Feature Selection
Feature Extraction. Feature extraction has many applications in machine
learning. Feature extraction refers to extracting informative features from a
raw dataset (features are usually represented as tensors). Features can help
us better describe and analyze data. For example, in the field of image pro-
cessing, feature extraction algorithms are used to extract information such as
shape, color, figure, etc., from the original image. The extracted features make
it possible to accomplish various image-processing tasks, such as image clas-
sification, object recognition, object tracking, etc. Common feature extraction
methods are: PCA [3], LDA [4], MDS [5], kernel methods [6], and neural
network based methods. Detailed neural network based feature extraction al-
gorithms will be discussed in Section 2.3.

Feature Selection. Feature selection is one of the most important methods in
feature engineering. Feature selection is first proposed to solve the problem
of overfitting. An overfitted model will perform well on the training set, but
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the performance will drop significantly on the test set. There are many differ-
ent reasons for model overfitting, such as poor model generalization ability,
improper dataset partitioning, etc. By reducing the number of irrelevant and
redundant features, feature selection can effectively improve model accuracy
and reduce the time required for training. Not only that, but feature selection
can also help us better interpret the data and build more relevant models to
the dataset. Existing feature selection methods include (1) filter method; (2)
wrapper method; and (3) embedded method [7].

2.3 Artificial Neural Network
The artificial neural network is the core of deep learning algorithms. It sim-
ulates the way biological neurons transmit signals to each other. An artificial
neural network is an adaptive system that can be used to estimate or approxi-
mate a mathematical model.

In particular, when an artificial neural network is used to extract features (of
an image), we call it a backbone network. A backbone is used to extract high-
dimensional features from images, thereby helping the model to complete var-
ious downstream tasks, such as image classification, object recognition, object
tracking, etc. Popular backbones include VGGNet [8], GoogLeNet [9], ResNet
[10], DenseNet [11], EfficientNet [12], ViT [13], and etc.

Deep Residual Learning. The artificial neural network contains many arti-
ficial neurons, which jointly perform calculations. The depth of the neural
network is a great influencing factor in the model’s performance. As the num-
ber of layers in the network increases, the network can extract more complex
features from the data, leading to better results for the model.

However, the degradation problem of deep neural networks makes them not
easy to train. In reality, when the network depth increases to a certain extent,
the model’s performance will actually decrease. The reasons for the degrada-
tion problem include (1) Overfitting caused by large parameter amount. The
more layers of the model and the larger the number of parameters, the weaker
the generalization ability of the model; (2) the problem of gradient disappear-
ance and gradient explosion caused by large layer number; (3) the loss of in-
formation caused by nonlinear changes in the deep neural network.
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Figure 2.1: A simple residual block [10]

Although some technical means such as batch normalization [14] can alleviate
the degradation problem of deep neural networks, the degradation problem is
still severe when the number of deep network layers is large. Deep residual
learning (ResNet) [10] was first proposed by Kaiming He in 2015, aiming to
solve the degradation problem. The ResNet refers to the structure of the VGG
[8] network and modifies it based on it. The core component of the ResNet is
the residual unit, which utilizes a short-circuit mechanism to make it easier to
learn features, thereby providing better performance.

2.4 Super-Resolution
Super-resolution (SR) reconstruction is one of the most popular research ar-
eas in computer vision. Super-resolution reconstruction techniques are used to
improve the resolution of the original image using either hardware or software
techniques.



CHAPTER 2. BACKGROUND AND RELATED WORK 9

Super-resolution reconstruction techniques are usually used to deal with the
following two situations (1) Single-frame image reconstruction from single-
frame images. Input a two-dimensional image, and the system will output a
two-dimensional image of higher resolution. (2) Reconstruct a super-resolution
single-frame image from multiple sequential images. Input a two-dimensional
image and its adjacent images in continuous time, and the system will fill the
high-resolution image using the complementary information from all images.

Our application case is different from the above two. We input a single frame
of a two-dimensional image (i.e., the bathymetry) and rely on additional ref-
erence information corresponding to this image (i.e., the sidescan sonar) to
reconstruct a higher resolution image.

Frequency Analysis-Based Super-Resolution. Tsai and Huang [15] first pro-
posed SR in 1984, using a re-construction method based on frequency analysis.
The observation model can be represented as matrices. By under-sampling
the sequential images, it is possible to use a matrix to represent the frequency-
domain phase change relationship corresponding to the time-domain shift be-
tween frames. After solving for the coefficients of the equations, we can obtain
the Fourier transform of the target high-resolution image.

Spatial Analysis-Based Super-Resolution. Some other methods are based
on spatial analysis, such as non-uniform interpolation based methods [16].
The non-uniform interpolation method is the most simple and intuitive high-
resolution image reconstruction method. Generally speaking, image recon-
struction using non-uniform interpolation includes three steps: motion esti-
mation, non-uniform interpolation, and deblurring. First, we estimate relative
motion information between images. Then, we interpolate the image to get a
high-resolution image. Finally, we perform post-processing on high-resolution
images, such as deblurring and noise reduction, to further improve the quality
of the images.

Learning-Based Super-Resolution. Learning-based methods are increas-
ingly common in computer vision, as well as in super-resolution research.
The learning-based method [17] mainly make use of the similarity in high-
frequency details of different images. Learning-based algorithms extracts the
relationship between high-resolution and low-resolution images for guiding
the the reconstruction of high-resolution images.
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Deep Learning-Based Super-Resolution. Different from the previous method,
deep learning-based super-resolution focus on the model design and the design
of loss function to optimize the performance. Among the deep learning meth-
ods, SRCNN [18] is the most representative one. The model first pre-process
the low-resolution images and then feed the processed images into a neural net-
work to extract high-frequency information representing image details. After
extracting the features of the image, we use a convolutional neural network to
reconstruct the high-resolution image. With a well-designed loss function, we
can use the back-propagation algorithm to update the network parameters to
train the model.



Chapter 3

Methods

In this section, we present the design details of the multi-resolution inference
system, including the dataset construction and the model design.

3.1 System Overview
Figure 3.2 shows the architecture of the system. The Multi-Resolution In-
ference System takes the sidescan and low-resolution bathymetry as input.
Then, the system generates and outputs high-resolution bathymetry. First, we
use residual blocks to extract features from the sidescan and low-resolution
bathymetry. The figure shows only one residual block for each of the two fea-
ture extractors. In actual implementation, five residual blocks are connected
sequentially to increase the depth of the network and thus improve the perfor-
mance. The system then concatenates the extracted features and feeds them
into another convolutional network to generate high-resolution bathymetry.
We add a shortcut from the low-resolution bathymetry to the output. This
allows the neural network to learn the residual of the bathymetry, thereby im-
proving convergence speed.

11
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3.2 Demonstration Example

Figure 3.1: Demonstration of the input and output images

Figure 3.1 shows an example of image reconstruction. The leftmost image is
the echo intensity recorded by the sidescan sonar system. Dark pixels repre-
sent high echo intensity. The resolution of the image is 256×256. The second
image is a low-resolution bathymetry. There are 256 depth values on each
row. Missing data between the two beams cause a certain distance between
the rows. In the example, there is a 4-pixel-wide gap between every two rows.
The third image is the bathymetry prediction output by the multi-resolution
inference system, which outperformed the interpolation-based method. The
fourth image is the ground truth bathymetry with a resolution of 256 × 256.
We conclude that the system can reconstruct high-resolution bathymetry ac-
curately.

3.3 Design of the Inference System
In this section, we present the design details of the multi-resolution inference
neural network model, including the underlying feature extractor and the dif-
ferent techniques involved. The structure of this model is shown in the Figure
3.2.

The input to the neural network is a grayscale low-resolution bathymetry of
size 256 × 256 and the sidescan. We perform column-wise linear interpola-
tion on the input low-resolution bathymetry in advance. As the input is similar
to the output, interpolation makes it easier for model training.
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We perform feature extraction on the low-resolution bathymetry and the sides-
can. We use multiple layers of residual blocks to do this. Each residual block
contains two convolutional layers and uses a shortcut between the input and
output. Each convolutional layer receives 128 channels of input and returns
128 channels of output. The input and output are of the same sizes as the
original image. Five residual blocks with the same structure are connected se-
quentially, increasing the network’s depth and allowing the network to extract
features from the input more accurately.

Figure 3.2: Architecture of the multi-resolution inference neural network
model

After obtaining the feature maps of the low-resolution bathymetry and the
sidescan respectively, we concatenate the feature maps and pass in another
block to generate high-resolution bathymetry. In this block, the number of in-
put and output channels increases to 256 from 128.
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Additionally, we used a shortcut between the input’s low-resolution bathymetry
and the output’s high-resolution bathymetry. This makes the neural network
not directly learn high-resolution bathymetry but learn the residual between
low-resolution bathymetry and high-resolution bathymetry. Due to the high
similarity between input and output, learning the residual improves the con-
vergence speed of model training. Alternative designs and corresponding eval-
uations are discussed in Section A.



Chapter 4

Experiments

4.1 Research Questions
We built the multi-resolution inference system based on the following tools.
We use Python for the entire system, auvlib [19] for processing the multibeam
data and the sidescan data, and PyTorch [20] for the neural network construc-
tion. Our goal is to answer the following research questions:

• RQ1: What is the performance of the multi-resolution inference system
in reconstructing high-resolution bathymetry?

• RQ2: How will the input bathymetry resolution influence the recon-
struction?

• RQ3: How efficient is the multi-resolution inference system?

RQ1 aims to evaluate the performance of the multi-resolution inference system
in reconstructing high-resolution bathymetry by comparing the prediction of
the system to the prediction generated by interpolation-based methods. RQ2
aims to evaluate the system’s performance among different input bathymetry
resolutions. RQ3 aims to evaluate the multi-resolution inference system’s run
time and memory usage.

4.2 Evaluation Setup
The experiment was carried out on a personal laptop which has an Intel(R)
Core(TM) i7-8750H CPU, and an Nvidia RTX2060 GPU with 16GB RAM

15
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running Ubuntu 18.04.

We use the multi-resolution dataset generated by slicing the draping results
mentioned in Section 3 as the test dataset. The dataset covered route 22 to
route 182 in Area 1, including surveys from 20m depth to 70m depth.

In the evaluation part, we comprehensively studied the performance of the
multi-resolution inference system. There are a total of 964 triplets in the multi-
resolution dataset. In the experiments of RQ1 and RQ2, we use peak signal-
to-noise ratio (PSNR) [21], structural similarity (SSIM) [22] and mean square
error (MSE) as the evaluation metric. In the experiments of RQ3, we use time
(ms) and memory usage (MiB) as the evaluation metric. Metrics for RQ1 and
RQ2 are defined as follows.

MSE. Given a clean image I of size m× n and a noise image K, the MSE is
defined as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2.

PSNR. Based on the definition above, PSNR (dB) is defined as

PSNR = 10 · log10
MAX2

i

MSE
,

where MAX2
i is the maximum possible pixel values of an image, which is 1 in

our case.

SSIM. SSIM is based on three measures between the two image samples x

and y: luminance l(x, y), contrast c(x, y), and structure s(x, y). The three
measures are defined as follows:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
,

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
,

s(x, y) =
σxy + c3
σxσy + c3

,

where c3 = c2/2, µx is the mean value of x (same for y), σ2
x is the variance of

x (same for y), σxy is the covariance of x and y. SSIM is defined as
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SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ,

where α, β and γ are weights which are set to 1 as default.

The parameter settings for model training are shown in the table 4.1. We train
all neural network models until convergence. Typically, ten epochs are enough
for the learning curve to reach convergence. We use mean square error (MSE)
as the loss function and stochastic gradient descent (SGD) as the optimizer.

Parameters Value

Learning Rate 1× 10−4

Batch Size 4
Max Number of Epochs 20

Table 4.1: Parameter settings for training

It should be noted that we ignore pixels that have zero value on the ground
truth image in training and evaluation. These pixels do not contain useful
information and may lead to a decrease in the model’s accuracy. We ignore
those pixels by iterating over all pixels when calculating loss.

4.3 Multi-Resolution Dataset Construction
Our goal is to create a dataset for training the neural network part of the multi-
resolution inference system. We first parse the raw data and create the basic
dataset. Each data sample contains a high-resolution bathymetry and a high-
resolution sidescan. Notice that each data sample should ensure that the lo-
cation data can correspond. Working with the basic dataset, we can create
different low-resolution bathymetry. Then, after filtering out low-quality im-
ages and data augmentation (flipping and adding Gaussian noise), we get the
complete dataset. At last, we randomly shuffle the images and split the dataset.
The training/validation/test split ratio is 8:1:1.
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Figure 4.1: A sample in the dataset (from left to right: low-resolution
bathymetry, high-resolution bathymetry and the sidescan)
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(a) Heatmap and mission routes

(b) Mesh (height map)

Figure 4.2: Heat map and the big mesh (height map) generated from the parsed
AUV data
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Data Parsing. SMaRC provided us with the raw data recorded by AUV. There
are four different types of data: positioning data, sound speed data, multibeam
data, and sidescan data. Each mission has a unique mission number, and the
data are divided into many files according to the mission number. To con-
struct the basic dataset, we first load and parse all multibeam data. A large
bathymetry mesh is generated by associating the multibeam data with the po-
sitioning data.

Figure 4.3: Mapped images (the sidescan and the bathymetry) after draping

Then, we do draping on the mesh for each sidescan file, which allows us to
get corresponding bathymetry and sidescan based on location. To drape the
measurements onto the multibeam mesh, we trace imaginary rays through the
water. The computed travel times of the rays are matched to the actual sides-
can beams. After we obtain the draping results, we slice the corresponding
bathymetry and sidescan into images of size 256 × 256. Till now, we have
obtained the basic dataset.
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(a)

(b)

Figure 4.4: Low-resolution bathymetry of different interval factors

Low-Resolution Bathymetry Generation. After generating the basic dataset,
we generate low-resolution bathymetry from high-resolution bathymetry. We
set a parameter called interval factor to control the interval between beams in
low-resolution bathymetry. The larger the interval factor, the wider the inter-
val between every two beams. We generated low-resolution bathymetry with
interval factors ranging from 2 to 64 from the high-resolution bathymetry for
each data sample. Our model will learn how to use this image as a basis to
reconstruct the high-resolution bathymetry by extracting information from the
sidescan.

Data Processing. After we get the sliced data, we filter out low-quality im-
ages. We convert the sliced images into grayscale images and then normalize
the bathymetry and sidescan images, respectively. We find the global max-
ima and minima pixel values and then normalize the pixel values of all images
from 0 to 1. The average pixel value is calculated for each image, and images
that are too dark (which means the position is too deep, making the details of
the underwater terrain to be difficult to see) are filtered out. We also removed
images taken when the AUV is turning, as this may cause undesired deforma-
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tions.

Figure 4.5: A sample in the dataset (A sample that was kept after data pro-
cessing (Left: the sidescan; Right: the high-resolution bathymetry)

Figure 4.6: A sample in the dataset (A sample that was discarded after data
processing, due to the lack of details and low average brightness (Left: the
sidescan; Right: the high-resolution bathymetry)

Then, we perform data augmentation to make the dataset more balanced. We
flipped 20% of the images (both bathymetry and sidescan). We added Gaus-
sian noise to 25% of the images (only bathymetry).
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Results

5.1 Performance of the Multi-Resolution In-
ference System

To answer RQ1, we evaluate the output predictions of the system. We com-
pare the output predictions of the system with the predictions generated by the
interpolation-based methods. Table 5.1 summarizes the PSNR, SSIM, and
MSE scores of different models on the test set.

Inference Methods PSNR SSIM MSE

Nearest Neighbor Interpolation 33.4693 0.9560 0.0010
Bilinear Interpolation 34.1338 0.9531 0.0010
Bicubic Interpolation 33.1040 0.9495 0.0009
Multi-Resolution Inference* 38.5328 0.9626 0.0010

Table 5.1: Comparison of the reconstruction performance using different in-
ference methods

When PSNR is used as the evaluation metric, we see that the multi-resolution
inference system outperforms the interpolation-based method. The PSNR
score of the multi-resolution inference system (38.5328) is 12.9% higher than
that of the interpolation-based method (the bilinear interpolation achieves the
highest score of 34.1338). When SSIM is used as the evaluation metric, the
performance of the multi-resolution inference system is slightly better, which
is 0.7% higher than that of the interpolation-based method (the nearest neigh-
bor interpolation achieves the highest score of 0.9560). When MSE is used as
the evaluation metric, all models perform equally well (0.0010).
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5.2 Effect of the Input Bathymetry Resolu-
tion

To answer RQ2, we measure the influence of different input bathymetry reso-
lutions on the inference performance of the system. Again, we use PSNR as
the evaluation metric. We control the training parameters to be the same, as
shown in Table 4.1. We use low-resolution bathymetry with different interval
factors (as indicated by Figure 4.4) as input for each experiment. These inputs
will be passed into the inference system after interpolation, together with the
sidescan. We record the PSNR scores obtained by the inference model un-
der different settings in Table 5.2. We also measure the performance of the
inference-based method (we choose the best performing method discussed in
Section 5.1, which is the bilinear interpolation) on the multi-resolution infer-
ence task to facilitate comparison of different methods.

Interval Factors Inference PSNR Interpolation PSNR

2 38.5328 34.1338
4 35.1967 30.8787
8 32.7931 28.6271
16 31.1992 26.6550
32 28.9413 24.5376
64 25.5100 21.5334

Table 5.2: Comparison of the reconstruction performance with different inter-
val factors

From the data obtained, we observe that the multi-resolution inference sys-
tem outperforms the inference-based method for all different interval factors.
When interval factors range from 2 to 64, the multi-resolution inference sys-
tem is on average 4.3% higher than the inference-based method. When the
value of the interval factor is 16, the difference in the PSNR score reaches the
maximum (4.6% than the inference-based method). When the value of the
interval factor is 64, the performance of the multi-resolution inference system
and the inference-based method is the closest, with a difference of 3.7%. The
results show that the multi-resolution inference system can improve the per-
formance in the multi-resolution inference task.
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5.3 Efficiency of the Multi-Resolution Infer-
ence System

To answer RQ3, we evaluate the efficiency of the multi-resolution inference
system. We use all the data in the multi-resolution dataset for evaluating the
pipeline efficiency. We recorded and compared the run time and memory us-
age of the system. The results are shown in Table 5.3.

Inference Methods Time (ms) Memory Usage (MiB)

Interpolation 3 5
Inference 1823 5243
Total 1826 /

Table 5.3: Time cost and memory usage of different modules of the multi-
resolution inference system

Run Time. Since the input images are of the same size, the inference time
of the system for different samples is very close. The average running time
of the entire system is 1826ms. Among them, the interpolation of the input
low-resolution bathymetry takes an average of 3ms, and the generation of the
complete high-resolution bathymetry from the interpolated bathymetry takes
1823ms.
Memory Usage. Interpolation of the low-resolution bathymetry by the sys-
tem takes up 5MiB of memory. When the system generates inference, it takes
up an average of 5243MiB of memory. More memory is used during the in-
ference because the system needs to load a large neural network model with a
massive number of parameters. It should be noted that if we change the size of
the neural network, the memory occupied by the system during inference will
change accordingly. At the same time, the memory occupied by the system
during the inference is positively related to the batch size.
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Limitations

We identify several limitations caused by the current design choices in the
multi-resolution inference model.

First, our model can only be used for fixed-depth high-resolution bathymetry
image reconstruction. When we use datasets with different depths (for exam-
ple, a mix of 30m to 70m) for training, we observe a decrease in the model’s
performance. Additionally, when we evaluate the model trained on a dataset
of a certain depth (e.g., 50m) using a dataset of a different depth (e.g., 30m
or 70m), the performance also decreases significantly. We believe that this is
because the sample size in the dataset is not large enough. In the future, the
model will likely be able to support image reconstruction at different depths.
One solution is to expand the number of samples at each depth in the dataset.
Another option is to feed depth into the model as an additional parameter, al-
lowing the model to encode depth features explicitly.

Second, our model can only be applied in limited types of conditions. Al-
though our dataset contains images of different underwater conditions, many
samples of different special scenarios are still missing. For example, different
water temperatures may cause different sound speeds, in which circumstances
we need to use different parameters for draping for processing the sidescan
images. For another example, the turbid water surface will cause bathymetry
to produce different brightness than normal and will produce larger noise in
the image. In addition to these two cases, differences in the geology of the
seafloor, differences in undulation conditions, and possible obstacles in the
water can also significantly affect the performance of our model.
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Third, the AUV may have attitude, position, and speed changes when sailing.
Currently, our model cannot distinguish this case. When this happens, the de-
tectors may collect incomplete or even erroneous information. For example,
when the vehicle is navigating into a corner and needs to make a turn, the
outside of the curve is faster than the inside of the curve, so the density of
pings emitted and received by the sidescan sonar system is more sparse on the
outside of the curve. Conversely, the pings on the inside of the corner will be
denser. Coincidence may even occur when the angle of the turn is large. These
issues are attempted to be corrected when we preprocess the dataset. Usually,
when we do draping, we delete the samples taken by the detectors as the AUV
ascends, descends, and turns. However, during a cruise at a constant speed,
the AUV may still experience slight steering and depth/speed changes due to
current disturbances. A possible solution would be to feed the real-time depth,
velocity, and heading information recorded by the AUV into the model as ad-
ditional parameters, allowing the model to explicitly encode the state of the
AUV, thus helping the model more accurately reconstruct the high-resolution
bathymetry image from the sidescan.

Overall, this project makes a simple attempt to reconstruct high-resolution
bathymetry using the sidescan. Although there is still much room for improve-
ment in the model design, our comparative experiments still demonstrate that
the sidescan can be helpful in reconstructing high-resolution bathymetry im-
age.
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Discussion

7.1 Discussion of the Results

7.1.1 System Performance
As we discussed in Section 6, we observe a decrease in the model’s perfor-
mance if we use samples of different depths for training instead of using sam-
ples of a fixed depth. This is probably because the backbone design does not
have the generalization ability to scale the features. Introducing self-attention
and position encoding may help to deal with the problem.

In calculating the three scores, we use 0 to 1 as the range of pixel values.
Another way is to use 0 to 255 as the range of pixel values. This would lead to a
larger variance and a different sign in the PSNR score. However, this would not
affect the comparison as long as we make our experiment consistent. As shown
in table 5.1, the three metrics have a consistent evaluation of the performance
of the system.

7.1.2 The Effect of Interval Factors
As the results shown in Section 5.1, we can see that the PSNR score achieved
by the multi-resolution inference system on the multi-resolution inference task
decreases as the interval factor becomes larger. Every time the interval factor
is doubled, the PSNR score decreases by an average of 2.7%. This means
that the interval factor will influence the performance of the system on multi-
resolution inference tasks. This infers that the lower the resolution of the input
bathymetry, the more difficult it is for the multi-resolution inference system to
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re-construct the bathymetry accurately. This may be due to the small number
of layers of the model, making it more difficult to extract high-dimensional
features when the input is sparse. Increasing the number of residual blocks
(e.g., 18 or 50) would address this issue.

7.2 Future Work

7.2.1 Improvement

Input Additional Information. As mentioned before, a potentially effective
way to improve model performance is to make additional information avail-
able to the input. Therefore, we propose the following two types of extra in-
formation: Add the navigation information of the AUV, including the attitude,
speed, and position of the AUV. This kind of information can help us find
possible errors and correct them within limits allowed by the hardware. As
mentioned above, if the AUV turns, the sensor’s beam density on the left and
right sides will be inconsistent. If we add this information to the model’s in-
put, we can enable the model to automatically correct for image distortions
caused by AUV turns. This function may be possible when the data includes
enough samples collected at turnings. If the AUV yaws left and right or floats
up and down due to turbulence, the input AUV’s position information can
also help us fix the deformation when reconstructing the image. On the other
hand, add environmental information such as depth, speed of sound in water,
and light conditions. Depth information is essential for image reconstruction.
Depth information can help us to normalize the samples of the dataset so as
to avoid the inconsistency of the data due to the rise or fall of the AUV. In
addition, inputting depth can help the image to better recover the texture of the
underwater surface. Input depth may also help the model distinguish common
objects by size. If the speed of sound in the water is different, we need to use
different parameters to do the draping for the sidescan on the mesh. Inputting
the speed of sound in water as a model parameter helps us to normalize the
dataset. Likewise, entering lighting conditions as parameters into the model
helps us to make the bathymetry consistant in the dataset.

Using More Underwater Scenarios for Training. One of the promising im-
provement plans is to expand the dataset to a wide variety of underwater sce-
narios. Training with different underwater scenarios can increase the gener-
alization ability of the model. At present, our dataset only contains samples
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in some locations, and the model cannot accurately distinguish these locations
according to the underwater scenarios. Ideally, the model should be able to dis-
tinguish between different underwater scenarios. For example, we may need
to label which samples are in open areas and which are occluded, in which
sample the water is clear, in which sample water is cloudy, and so on. We
should also try to ensure that the number of samples in different scenarios is
balanced as much as possible. A balanced dataset will help improve the over-
all performance of the model.

Apply A Better Backbone Network for Feature Extraction. In order to im-
prove the training speed of the model, we currently only use residual blocks
with a low number of layers for feature extraction. However, recent research in
computer vision has proposed many backbone networks with better compre-
hensive performance, which can extract richer and higher-dimensional features
from images. For example, Vision Transformer (ViT) [13] can better embed
pixel-to-pixel relationships. Compared with traditional CNN, the transformer-
based neural network can better capture global feature information. In addi-
tion, ViT preserves more spatial information than ResNet [10]. This will un-
doubtedly be of great help for the reconstruction of bathymetry images. ViT is
also able to learn high-quality intermediate features, which can help improve
the final performance of the model. These advantages of ViT may make it a
better choice than ResNet (or a set of residual blocks) to achieve better results
on our model.

7.2.2 Extended Applications

Image Completion. Our original design of the inference model can be ex-
tended to image completion. So far, our model only considers inputting sides-
can and low-resolution bathymetry at the same time to reconstruct the high-
resolution bathymetry. However, in practical applications, we are likely to
encounter situations where one type of input is missing. The model should
guarantee robustness in this case. When low-resolution bathymetry is miss-
ing, we should be able to reconstruct the image with the full information con-
tained in the sidescan, albeit with some loss of accuracy. When the sidescan
is missing, we may not be able to reconstruct the image with factual informa-
tion accurately, but we can still make general predictions on the interpolated
low-resolution bathymetry, which provides a higher-resolution reconstructed
image. Image completion in the case of missing information can help us gen-
erate smoother results when we want to perform image reconstruction on a
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large amount of data.

Real-time Multi-Resolution Video Inference. When our model is fast enough
to process the image, we can apply the image reconstruction in real time. In
particular, we can apply image reconstruction to the video. The easiest way is
to extract discontinuous frames from the video at certain intervals and input
them into the model, thereby outputting a series of continuous high-resolution
image reconstruction results. In addition, our current model takes a single
frame of the image as the model input. In the future, we can consider inputting
multiple frames of images at the same time to establish a temporal as well as
a spatial relationship between the images, thereby improving the performance
of model reconstruction. A single-frame image may lose some information.
For example, when there is a seamount in front of the AUV, the detector can-
not see behind the seamount. The terrain details behind the mountains are not
available to AUVs. However, when the AUV sails forward until the front of
the seamount, we can see the whole picture of the seamount. The same ap-
plies to small hills. Therefore, if we can get the input images to be connected,
we have the opportunity to obtain a more complete reconstructed image. To
achieve this, we must have the support of a larger dataset with corresponding
annotations.
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Conclusions

In this project, we study how to accurately and efficiently reconstruct high-
resolution bathymetry. There are two main challenges in designing such a
system: (1) We need to make full use of the information contained in the sides-
can; (2) We do not have ready-made datasets. To address these two challenges,
we design a multi-resolution inference system that can extract features in the
sidescan and rely on these features to reconstruct high-resolution bathymetry
on low-resolution bathymetry and build a dataset for system evaluation and
neural network training, which is made from the sidescan and the MBES data
provided by SMaRC. Comprehensive evaluations are performed of the multi-
resolution inference system on the multi-resolution dataset from the aspects
of accuracy and efficiency. From the results, we draw the following conclu-
sions: (1) multi-resolution inference system outperforms interpolation-based
methods; (2) multi-resolution inference system achieves better performance
for various interval factors; (3) multi-resolution inference system is efficient
with regard to average run time and memory usage. We conclude that our
system can reconstruct high-resolution bathymetry well based on the experi-
mental results.
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Appendix A

Evaluation of Design Alternatives

In this section, we introduce the different neural network architectures we de-
signed and evaluate their performance. The performance of each design on
the test set is shown in the following table:

Design PSNR

Design 1 19.1369
Design 2 33.4144
Design 3 33.1237
Design 4 35.9156
Multi-Resolution Inference* 38.5328

Table A.1: Comparison of the reconstruction performance using different neu-
ral network design

A.0.1 Design 1
In theory, we can construct high-resolution bathymetry directly from scratch.
Here, we demonstrate the simplest model.

Architecture

In this model, we only use sidescan as input. The input will go through two
residual blocks, and the output will be the generated high-resolution bathymetry
of the same size. The idea is that the sidescan contains all the information to
construct the high-resolution bathymetry. The structure of this model is shown
in the figure below.
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Figure A.1: Architecture of design 1

Discussion

Obviously, this is not the best design. While the sidescan contains more infor-
mation than the low-resolution bathymetry, the reconstruction accuracy is not
good. This is because the reconstructed image and the ground truth image are
not well aligned. On the one hand, the difference between input and output
is too significant. Therefore the learning process is difficult to converge. Al-
though there is a corresponding relationship between bathymetry and sidescan
in the dataset, they are recorded from two different sensors, so there will be a
certain deviation in the perspective of viewing the seabed. As we cannot build
a pixel-level match from the output and the ground truth, the evaluation results
are unsatisfactory.
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A.0.2 Design 2
We introduce low-resolution bathymetry to address the alignment issue in the
previous model. Using it as an input to the model, we manually introduced the
bathymetry’s positional features into the model, replacing the original short-
cut in the residual blocks. This allows the model to improve its alignment
capabilities.

Architecture

In this model, we use sidescan as the main input for feature extraction and low-
resolution bathymetry as the auxiliary input to help the model output align.
The input will be extracted by a set of residual blocks. The extracted features
are passed through additional convolutional layers to generate high-resolution
bathymetry. Note that after each residual block, we add the interpolated low-
resolution bathymetry to the intermediate result recursively. In this way, we
introduce positional features to the feature extraction of each layer.
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Figure A.2: Architecture of design 2

Discussion

There are also some problems with this design. Although passing in low-
resolution bathymetry allows the image to be well aligned, passing it multiple
times can also affect the model. This effect can lead to poor feature extraction
ability of the model. The behavior is that the output of the model will be
highly similar to low-resolution bathymetry. There is no way for the model to
effectively recover details using sidescan.

A.0.3 Design 3
In this model, we also use sidescan as the main input and low-resolution bathymetry
as the auxiliary input. The difference from the previous model is that we
only add low-resolution bathymetry to the last result to let the neural network
learn the residual between input and output. In this way, the model implicitly
takes positional features into account during the learning process. At the same
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time, since the feature extraction is independent, the input of low-resolution
bathymetry does not interfere with the extraction process.

Architecture

Like the previous models, we use multiple residual blocks for feature extrac-
tion on the sidescan. For each residual block, we apply the standard short-
cut design to connect the input and output. In this way, the model will learn
the residual between the features. The training speed can be improved, and
the problem of network degradation can be effectively solved. The differ-
ence from the previous models is that we add the interpolated low-resolution
bathymetry to the results reconstructed from the features. In this way, we let
the network learn the residual between low-resolution bathymetry and high-
resolution bathymetry. This not only allows the model to align positionally
during the learning process automatically but also speeds up the learning pro-
cess.

Figure A.3: Architecture of design 3
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Discussion

Compared to the previous model, the design of this model is more reasonable.
Sidescan, which is the main source of information, is used for feature extrac-
tion, while low-resolution bathymetry, which has higher accuracy, is used as
the reference image for alignment. The network only learns the residual be-
tween the reference image and the reconstructed image in the last step, improv-
ing the speed of training. Since the process does not affect feature extraction,
it ensures the accuracy of the obtained results. However, this model still has
room for improvement because low-resolution bathymetry is not fully utilized.

A.0.4 Design 4
In this model, we use a more complex structure for feature extraction. We hope
to use accurate information from low-resolution bathymetry to help achieve
high-quality reconstructions. We perform feature extraction on low-resolution
bathymetry and sidescan separately and jointly feed these features into another
set of convolutional networks to generate high-resolution bathymetry.

Architecture

We use the same structured model for feature extraction for low-resolution
bathymetry and sidescan. In each feature extractor, we use multiple sets of
residual blocks for feature extraction to obtain rich feature expressions. Simi-
larly, for each residual block, we apply the standard shortcut design to con-
nect the input and output. After we extract the features of low-resolution
bathymetry and sidescan, respectively, we concatenate the obtained larger set
of feature maps. We can do this because both feature extractors output the
same size and number of feature maps. Then, we pass the concatenated fea-
ture maps to another set of convolutional neural networks to generate high-
resolution bathymetry. It should be noted that to verify the effectiveness of the
feature extractor design, we did not add a shortcut in the final step.
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Figure A.4: Architecture of design 4

Discussion

Compared with the previous model, we fully use the pixel location informa-
tion in the low-resolution bathymetry. By using two sets of residual blocks
to extract information in low-resolution bathymetry and the sidescan, respec-
tively, the model is not only accurate but also performs well in locating the
features. Since experiments in design 1 and design 2 demonstrate that a short-
cut between the input of interpolated low-resolution bathymetry and output of
high-resolution bathymetry can improve the model performance, we finally
proposed our final design of the multi-resolution inference neural network
model, as shown in Figure 3.2. Notice that comparative experiments show
that the model performs better using interpolated low-resolution bathymetry



APPENDIX A. EVALUATION OF DESIGN ALTERNATIVES 43

than passing low-resolution bathymetry directly. A detailed description of the
model is provided in 3.3.
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