
Eliminating eBPF Tracing Overhead
on Untraced Processes

Milo Craun
Virginia Tech

Blacksburg, VA, USA
miloc@vt.edu

Khizar Hussain
Virginia Tech

Blacksburg, VA, USA
khizar@vt.edu

Uddhav Gautam
Virginia Tech

Blacksburg, VA, USA
upgautam@vt.edu

Zhengjie Ji
Virginia Tech

Blacksburg, VA, USA
zhengjie@vt.edu

Tanuj Rao
Virginia Tech

Blacksburg, VA, USA
tansanrao@vt.edu

Dan Williams
Virginia Tech

Blacksburg, VA, USA
djwillia@vt.edu

ABSTRACT
Current eBPF-based kernel extensions affect entire systems, and
are coarse-grained. For some use cases, like tracing, operators are
more interested in tracing a subset of processes (e.g., belonging to a
container) rather than all processes. While overhead from tracing is
expected for targeted processes, we find untraced processes—those
that are not the target of tracing—also incur performance overhead.
To better understand this overhead, we identify and explore three
techniques for per-process filtering for eBPF: post-eBPF, in-eBPF,
and pre-eBPF filtering, finding that all three approaches result in
excessive overhead on untraced processes. Finally, we propose a
system that allows for zero-untraced-overhead per-process eBPF
tracing by modifying kernel virtual memory mappings to present
per-process kernel views, effectively enabling untraced processes to
execute on the kernel as if no eBPF programs are attached.

CCS CONCEPTS
• Software and its engineering → Operating systems; Software
testing and debugging; Software performance;

KEYWORDS
eBPF, dynamic tracing, tracing overhead, copy-on-write
ACM Reference Format:
Milo Craun, Khizar Hussain, Uddhav Gautam, Zhengjie Ji, Tanuj Rao,
and Dan Williams. 2024. Eliminating eBPF Tracing Overhead on Untraced
Processes. In Workshop on eBPF and Kernel Extensions (eBPF ’24), August
4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3672197.3673431

1 INTRODUCTION
eBPF is a Linux kernel subsystem that allows for safe kernel exten-
sions to be loaded into the kernel. eBPF programs are used for a vari-
ety of use cases from packet filtering [5, 15, 18, 24, 37, 38, 43, 51, 55],
to profiling [3, 10, 23, 51], to application acceleration [20, 34, 39,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0712-4/24/08.
https://doi.org/10.1145/3672197.3673431

59, 60], to system tracing [4] and security [2, 13, 14, 19, 26, 31].
Extensions attach to a set of hookpoints, which cause the extension
to be executed whenever a certain system event occurs (e.g. system
call). eBPF’s event based model of execution is especially useful for
tracing use cases. However, the current implementation of eBPF
does not natively support per-process tracing, relying instead on
other methods.

One method to achieve per-process tracing, which we term post-
eBPF filtering, is to capture all events, and then filter for relevant
processes after data collection. Another method, in-eBPF filtering,
used by bpftrace [4], filters for processes of interest inside eBPF
programs. Per-process tracing can also be achieved by checking the
PID before eBPF program execution through kernel modification,
in a technique we refer to as pre-eBPF filtering. We explore the
costs of all three approaches and find that they place significant
overheads on untraced processes, referred to as untraced overhead.
We conclude that a new system is needed to enable zero untraced
overhead per-process tracing.

We propose a novel approach which provides individual pro-
cesses their own view of kernel hookpoints. When an eBPF pro-
gram is attached to a hookpoint, a kernel view manager essentially
performs copy-on-write to attach the eBPF program to a process
specific kernel view. Process kernel page tables are then modified
to point to new kernel pages, rather than the original shared pages.
Consequently, the eBPF extension is executed only for the process
of interest, while other processes continue to use the original, un-
patched kernel pages without any performance impact. Our design
isolates tracing overhead to the processes being tracing, achieving
zero untraced overhead per-process tracing.

Providing per-process views of kernel hookpoints also presents
new opportunities beyond tracing, such as better support for kernel
extension and application acceleration. We identify these opportu-
nities and also discuss challenges around the granularity of kernel
views and the complexities of managing per-view kernel state.

This work raises no ethical concerns.

2 TRACINGWITH EBPF
Tracing is an important and common use case for eBPF programs,
depicted in Figure 1. As eBPF programs are loaded dynamically, and
are verified safe, they can be deployed on production systems to
better understand application performance in production. When an
operator wants to trace an application, they must identify a set of

https://doi.org/10.1145/3672197.3673431
https://doi.org/10.1145/3672197.3673431


eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Craun et al.

Figure 1: Overview of eBPF based tracing

Figure 2: To attach a BPF program, the tracing hookpoint
installer modifies kernel memory

hookpoints that are relevant to their application. They will then use
a tool like bpftrace [4] or will create custom eBPF programs that
attach to the identified set of hookpoints. Each program will collect
some information when it is triggered, perform a small amount of
pre-processing, and finally store the information in a shared data
map. User space programs can then read data from shared data maps
and perform more extensive post-processing and visualization.

To load and attach an eBPF program requires multiple changes
to kernel memory, as shown in Figure 2. In addition to allocating
memory for the instructions making up the eBPF program, a tracing
hookpoint installer in the kernel modifies the kernel text to call into
a handler, which then calls the eBPF program. For example, the
kprobe installer inserts a jump or trapping instruction into the
kernel text while the tracepoint installer patches statically inserted
no-op instructions. All tracing hookpoints cause changes to be
made to kernel text pages when an eBPF program is attached.

Since the kernel is shared, whenever an operator attaches an
eBPF program to a hookpoint, it will be invoked regardless of pro-
cess context, effectively attaching the eBPF program for all pro-
cesses. The attached extension will execute every time any process
triggers the hookpoint. For example, an eBPF program attached
to the sys_enter_read tracepoint will be executed whenever any
process calls the read system call. Regardless of what the operator
wanted to trace, the system will trace all processes that cause the
attached event to be triggered.

2.1 Per-Process Tracing
In many instances, system operators only want to trace an individ-
ual application or container, instead of tracing all running processes
on the system. We identify three ways to implement per-process
tracing: post-eBPF, in-eBPF, and pre-eBPF filtering.
Post-eBPF Filtering: One approach to per-process tracing is to
collect data from all processes and then filter for relevant PIDs in
userspace. It is easy to associate PID with collected data if the eBPF
program stores the PID along with the tracing data. Post filtering
is a natural approach for per-process tracing as it does not require
any additional logic in eBPF programs or kernel modifications.
In-eBPF Filtering: Another approach to per-process tracing is to
filter by PID inside eBPF programs. In eBPF there is a helper function
bpf_get_current_pid_tgid() which allows eBPF programs to
determine the PID of the process that triggered them. Operators
can statically define a specific PID in their eBPF program that would
cause the tracing action to occur. Tools like bpftrace provide builtin
functionality to filter out events by PID by generating such a check
in the eBPF program. If there is a need for more dynamic PID
tracing, PID checking can also be implemented using a shared map
containing a list of PIDs to trace. A simple if condition within the
eBPF program is sufficient for most tracing uses cases.
Pre-eBPF Filtering: To avoid the cost of eBPF program startup, a
third approach is to implement a check in the kernel before the eBPF
program gets executed. For example, one could add a field to the
task_struct that indicates if a given process should be traced and
check the field on each hookpoint before executing eBPF program
startup code. Doing so would reduce the overhead on untraced
processes as compared to in-eBPF filtering. The pre-eBPF approach
is not currently used in practice.

2.2 Overheads of Per-Process Tracing
As eBPF programs are executed whenever any process triggers an
attached event, the above strategies produce overhead on untraced
processes. Post-eBPF incurs the full cost of tracing, while pre-eBPF
and in-eBPF filtering reduce the overhead by bailing out of the
eBPF program execution flow early. We ran two experiments to
investigate the cost of the above approaches to per-process tracing.
The first experiment is a measure of the overhead per system call for
each approach, while the second experiment measures the impact
of tracing overhead on Memcached performance.

2.2.1 Untraced Process System Call Overhead. We performed an
experiment to measure system call overhead on untraced process
due to per-process tracing approaches. We use a baseline with
no eBPF program attached on an unmodified Linux 6.8 kernel to
show the best possible performance of the system call. We also
create a modified Linux kernel to implement a pre-eBPF PID check.
We then implement an eBPF program with a single bpf_printk()
helper call to represent a tracing load. On the baseline kernel, the
overhead for the tracing program is representative of the post-eBPF
filtering cost, since post-eBPF filtering is done offline. We use the
same tracing program on our modified kernel to show the cost of
pre-eBPF filtering. Additionally, we create a modified version of the
tracing program that includes a PID lookup and single if condition
to implement in-eBPF per-process tracing.



Eliminating eBPF Tracing Overhead
on Untraced Processes eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

baseline pre-eBPF in-eBPF post-eBPF
0

200

400

600

Ti
m

e 
(n

s)

read()

baseline pre-eBPF in-eBPF post-eBPF
Per-Process Tracing Approach

0

500

1000

1500

2000

Ti
m

e 
(n

s)

sendmsg()

Figure 3: Untraced-overhead due to per-process tracing ap-
proaches on read() and sendmsg() systemcalls. The orange
bar represents the cost of the tracing program, which we
control. Error bars represent one standard deviation.

We measure the time for two system calls: read and sendmsg,
by calling the function 10,000 times and then dividing by 10,000
to estimate the time each individual system call required. We then
repeat this for 10 runs, and compute the average.

Figure 3 shows the overhead costs on untraced programs. As
expected, the most expensive approach was post-eBPF filtering,
where the entire tracing program is executed. In-eBPF filtering
saves time by avoiding executing the full eBPF program. Pre-eBPF
filtering saves even more time by avoiding all BPF program setup
and instructions. On our test setup, we find that the most efficient
per-process approach, pre-eBPF, slows down the read and sendmsg
system call by 54 and 112 nanoseconds respectively, which corre-
spond to 15% and 6% slowdown. All other approaches are more
expensive.

We additionally measure the impact of attaching multiple eBPF
programs to a single hookpoint, and attaching individual programs
to multiple hookpoints. We use in-eBPF and pre-eBPF test setups
as described above. We attach up to 50 tracing programs to the
sys_enter_read tracepoint to see the impacts of attaching multi-
ple eBPF programs to the same hookpoint. We also attach kprobe
eBPF programs to 14 kernel functions that the read system call
calls, to determine the impact of attaching eBPF programs to multi-
ple hookpoints. Figure 4 shows the results of our experiment. We
see that in-eBPF untraced overhead scales both with the number
of attached programs to one hookpoint, and with the number of
hookpoints attached to. For pre-eBPF the untraced overhead for
attaching to a single hookpoint is constant, while the untraced
overhead scales with the number of attached hookpoints.

From the above experiment, we see that untraced overhead for
pre-eBPF and in-eBPF scales with the number of attached hook-
points. As eBPF deployments become more complicated, we expect
the number of attached hookpoints to increase, which would result
in greater untraced overhead.

Figure 4: Effects of multiple attachment on untraced over-
head

2.2.2 Untraced Application Performance Degradation. To deter-
mine how overheads on system calls due to per-process eBPF pro-
grams translate into application performance loss, we ran a mac-
robenchmark test. We used two dual core VMs to benchmark a
Memcached instance. One VM acts as a client and uses Memaslap
to generate load for the server. Memaslap is configured to run on
two threads, with 1000 concurrent connections. It will then execute
6000000 get commands and 10240000 set commands to measure
the throughput of the Memcached server. Each test is run five times
and the throughputs are averaged.

To simulate tracing an application that sends data over the net-
work, we attach tracing programs to the sys_enter_read and
sys_enter_sendmsg tracepoints. We have two versions of each
tracing program. The first simply calls the bpf_printk() helper
function to print a message, while the second implements a static
PID check with the bpf_get_current_pid_tgid() helper func-
tion, and an if condition before the bpf_printk() function call.

We ran a total of four different tests. The first test runs on an
unmodified kernel, with no eBPF programs attached, representing
the baseline performance of our test system. The second test at-
taches the printing tracing programs to the server, representing
the post-eBPF filtering approach. The third test attaches the static
PID checking tracing programs, representing the in-eBPF approach.
The final test uses the same tracing programs as the second test,
but running on our modified kernel that checks PID before run-
ning eBPF programs, representing the pre-eBPF approach. Both
PID checks will always bail out of eBPF execution when triggered
by Memcached, as it is not the process we are tracing.

Our baseline test was able to handle 573,939 throughput opera-
tions per second (TOPS). As expected, post-eBPF filtering caused
the greatest performance degradation at 515,618.2 TOPS. In-eBPF
managed 558,363.8 TOPS, while pre-eBPF achieved 565,356.2 TOPS.
The measured performance degradations align with the measured
costs found in the system call overhead experiment. We find that
the most efficient per-process approach, pre-eBPF, causes a 1.5% de-
crease in throughput, while in-eBPF filtering causes a 2.7% decrease.



eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Craun et al.

Figure 5: Modified eBPF program attachment path

We conclude that the overheads imposed by existing per-process
approaches do translate to application performance degradation.
As shown in Figure 4, the performance losses will also scale with
the number of eBPF programs attached to different hookpoints,
as each attached hookpoint has a cost. A more involved tracing
scenario would cause even greater performance degradation.

3 PER-PROCESS KERNEL VIEWS FOR
PER-PROCESS TRACING

To achieve efficient per-process eBPF tracing, we must reduce un-
traced overhead, while ensuring that all relevant tracing data is
collected. Figure 5 shows an overview of how our system fits into
the tracing workflow, while Figure 6 shows the mechanism we use.
We identify the two main tracing hookpoints as tracepoints and
kprobes. All tracing hookpoints share two facts in common, which
we use as our key design insight:

(1) Unattached tracing hookpoints are fast
(2) Attachment involves writing to kernel pages

As described in Section 2, when an eBPF extension is attached to
a hookpoint, it calls a tracing hookpoint installer which modifies
kernel text and data. In the existing Linux kernel, the tracing hook-
point installer directly modifies the kernel. We propose modifying
the tracing hookpoint installer to call into a kernel view manager,
as shown in Figure 5. Rather than using the same memory map-
ping for kernel pages regardless of the process context, the kernel
view manager allows for different kernel memory mappings for
different processes. The kernel view manager creates copies of to-
be-modified kernel pages, and performs the same modifications
as the tracing hookpoint installer on the new pages, essentially
performing copy-on-write. Afterwards, the kernel view manager
modifies the kernel page tables of traced processes to map to the
new pages, instead of the existing unmodified pages, as shown in
Figure 6. To modify the correct process’ page tables, we propose
adding a new argument to the eBPF program attachment API, al-
lowing operators to specify the process they want to trace. The
end result is a system that allows per-process tracing, with zero
untraced overhead. In the rest of this section, we examine the kernel
view manager in more detail, discuss open design questions, and
raise challenges associated with our design.

Figure 6: Kernel memory virtualizationmechanism overview

3.1 Kernel View Manager
The kernel view manager is the main component of our proposed
design, and is responsible for providing per-process hookpoint
views by virtualizing tracing hookpoint text and state. When an
eBPF extension is attached to a tracing hookpoint, the kernel view
manager must make new copies of kernel pages. The first page to
copy is the text of the tracing hookpoint. However, the kernel view
manager can avoid copying the page if another eBPF program has
already been attached. The tracing hookpoint page is modified to
call into a tracing hookpoint handler which will contain the same
code for any traced process on the same tracing hookpoint.

The kernel view manager must also copy tracing hookpoint state
in order to provide a private copy. Tracing hookpoint state includes
an eBPF program array which contains all the eBPF programs to
be executed by the tracing hookpoint handler. Executing eBPF
programs associated with other processes not only makes tracing
slower, but could impact the correctness of tracing by executing
eBPF programs intended for one process, on another. Copying
tracing hookpoint state also allows for the optimization for tracing
hookpoint text described above.

After the necessary pages have been copied, the kernel view
manager must update the kernel page tables for each traced process.
To facilitate finding the correct process, eBPF attachment includes
an argument to statically add a PID to be traced, similar to how PID
is specified in in-eBPF tracing. If PIDs need to be dynamically added,
a system call can be used to instruct the kernel view manager to
update the page tables of the desired process.

3.2 Open Design Questions
In this subsection, we discuss open design questions raised by our
approach that need to be addressed.
Tracing Hookpoint State: The nature of tracing hookpoint state
is not clear. We know that at the minimum it includes the eBPF
program array, but it may also include other important pieces of
data. Additionally, it is not clear that all tracing hookpoints share a
common set of necessary tracing hookpoint state.
Runtime Kernel ViewManager: There may need to be a runtime
component of the kernel view manager. Our current proposed
design performs most work during attachment time, avoiding as
much runtime cost as possible. However, having different kernel
pages tables per process may lead to issues when a CPU currently



Eliminating eBPF Tracing Overhead
on Untraced Processes eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

running a traced process services an interrupt. If the interrupt
uses any pages that have been modified, kernel state may become
inconsistent.
Fork Semantics: It is unclear how fork() should function under
our proposed system. Operators interested in tracing a process may
also be interested in tracing child processes. On the other hand,
forked processes may be performing entirely different work, and
would not make sense to be traced alongside their parent process.
Implications for Other Subsystems: Modifying kernel page ta-
bles may also cause problems for other Linux kernel subsystems
that interact with kernel text pages, such as SELINUX and the
kernel module loader. The changes we make are small and self-
contained, so it should be possible to maintain the functionality of
any impacted subsystems. There may be more difficult challenges
that arise in other subsystems that must be addressed.
Tracing Program Life Cycle: Having per-process views of hook-
points raises the question of what happens when an eBPF program
is detached. As hookpoint text is shared, the kernel view manager
must ensure that other processes do not have eBPF programs at-
tached to the same hookpoint before it can free the page. It may
be inefficient to free the modified hookpoint text pages. The kernel
view manager must also know when to free private hookpoint state
pages.
Userspace Component: It is unclear how much of a userspace
component is needed to facilitate our proposed system. Some modi-
fications need to be made in order to associate eBPF programs with
processes, but there may be greater orchestration needs. There may
be interactions between maps, or limitations of hookpoints that
must be addressed.
Wasted Memory: Depending on the size of pages that hookpoints
are located on, and the number of extensions that are attached, a
significant amount of memory could be used. If hookpoints are
contained on huge pages, each copy would require 1 GB [7] of
data to be duplicated. We must consider the page size and memory
layout when designing our system to avoid unnecessary wasted
space. We speculate that careful memory layout and the use of 4KB
pages may help.
Overhead of multiple kernel views: Switching between kernel
memorymappingswhen switching between processesmay increase
pressure on TLBs and cause a reduction in performance. However,
due to kernel page table isolation, all processes must load a new
virtual mapping of the kernel into their address space whenever
they perform a mode switch. We may be able to take advantage
of the existing page table switch to hide the cost of our page table
modifications.

4 BEYOND TRACING
In addition to tracing, eBPF programs have served to extend ker-
nel functionalities by replacing kernel policy and mechanism or
accelerating applications. Examples of using eBPF to replace ker-
nel policy and mechanism include attachment to Linux Security
Module hookpoints to implement mandatory access control [8],
implementation of custom TCP congestion control algorithms [27],
implementation of new schedulers [29], and implementation of sys-
tem call filtering [28]. Per-process hookpoint execution facilitates
the efficient implementation of per-process policies, enabling the

enforcement of kernel policies tailored exclusively to individual
processes without any additional overhead on others.

eBPF-based approaches to application acceleration typically in-
volve increased kernel-side processing tominimize context switches
and bypass certain parts of the kernel [52]. Two existing applica-
tion accelerators, BMC [34] and Electrode [60] bypass the kernel
networking stack in application-specific ways. XRP [59] accelerates
the storage stack with eBPF but necessitates application modifica-
tion to realize its benefits. With per-process hookpoints, we could
modify the system behavior to match the application, allowing for
transparent acceleration of applications and custom kernel inter-
faces.

In the rest of this section, we discuss two challenges in extending
our design for zero-untraced-overhead per-process eBPF tracing to
more general extension use-cases.
Per-Flow Hookpoint Execution Our proposed system operates
at the granularity of per-process hookpoint execution, but it could
be extended to other granularities, such as per-network-flow hook-
point execution. For example, BMC and Electrode operate on net-
work hookpoints in the kernel to accelerate applications. When the
attached hookpoints are triggered, the target PID for each packet
is not known, which prevents our system from executing eBPF
programs on process-specific packets. Instead we can expand our
system to operate on a per-flow basis. Using a multi-queue NIC, we
can dedicate CPU cores to handle certain packet flows. For each
CPU that accelerates one application, we can change the kernel
mappings to present a view of the kernel with the appropriate eBPF
programs attached.
Increased Kernel State Management Complexity: Allowing
for multiple views of kernel hookpoints at different granularities
greatly increases the complexity of managing kernel state. There
are three main sources of new state. First, eBPF programs may store
private state into multiple maps that are read from and written to by
multiple other eBPF programs or userspace programs. In our initial
design, eBPF programs and maps are still globally visible, but the
execution of eBPF programs is on a per-process basis. Other eBPF
programs and userspace programs can make changes to eBPF maps
regardless of what process is associated with each eBPF program.
The relationship between eBPF programs, maps, processes, flows,
etc. introduces state management complexity. Second, the need to
manage kernel views in the face of different granularities, such as
per-flow views introduces another source of state complexity. For
example, the runtime kernel view manager and program lifecycle
raised in Section 3may need to keep track of which flow and process
are running on which CPU in order to correctly switch the views.
Third, managing eBPF program views of kernel state may introduce
significant state management complexity. Tracing programs are
relatively simple in that they do not generally modify kernel state.
If a more general eBPF extension modifies kernel state in a specific
way, or makes assumptions about kernel state, inconsistencies may
arise. We want eBPF programs to have their own internal view of
kernel state, as they are operating on a per-process view, so they
must have their own copy. The extent and complexity of managing
kernel state copies may depend on the extension and is an open
question.



eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Craun et al.

5 RELATEDWORKS
This section reviews the literature on tracing, methods for mitigat-
ing the overhead caused by dynamic tracing, and mechanisms for
providing multiple kernel views.

5.1 Mitigating Tracing Overhead
Tracing, the process of recording system activity, is commonly
achieved through static (i.e., compile-time) or dynamic (i.e., run-
time) code instrumentation. Static instrumentation entails inject-
ing monitoring code directly into the source code before com-
pilation, a method employed by tools such as GNU gprof [35].
Conversely, dynamic instrumentation [21, 50], utilized by tools
like DTrace [22], ftrace [6], perf [9], and SystemTap [11], dynam-
ically installs customizable instrumentation codes based on run-
time parameters and system conditions. eBPF has been extensively
used for profiling [3, 10, 23, 51], and dynamic tracing across a
range of use cases, including Android [1, 12, 44], distributed sys-
tems [16, 25, 32, 45, 53, 57], and HPC [56, 58].

Several tracing overhead minimization research endeavors have
been carried out in the past. Gebai et al. [33] develop microbench-
marks that unveil insights into the tracers’ internals and show the
cause of each tracer’s overhead. Nagy et al. [49] eliminate unwanted
tracing data for their fuzzing. Thomas et al. [54] investigate dif-
ferent instrumentation schemes and propose two new schemes
based on bitvectors that reduce the overhead for sampling-based
execution monitoring. Mohror et al. [48] thoroughly investigate
several different tracing overheads, including trace instrumentation,
periodic writing of trace files to disks, differing trace buffer sizes,
system changes, and increasing number of processors in the target
application. In-advance filtering, such as in-driver filtering [30],
processes data before it reaches the tracing programs, ensuring that
they handle only relevant data and efficiently utilize resources.

More general approaches to accelerate eBPF programs also can
reduce tracing overhead. KFuse [42], merges loaded eBPF programs
to improve execution performance. Merlin [47] provides LLVM
passes that rewrite eBPF bytecode for efficiency, enhancing execu-
tion speed without failing kernel verification.

5.2 Multiple Kernel Views
Several prior works investigate the use of multiple kernels on a
single system. Multikernels [17] propose running different kernels
on each core, with each kernel and core combination exclusively
accessing its own memory. Face-Change [36] and MultiK[40] pro-
vide a per-process view of the same kernel in order to debloat the
kernel and reduce its attack surface [41, 46]. The per-process view
of the kernel explored in these works is appealing for managing
per-process tracing and extension.

6 CONCLUSION
Per-process eBPF tracing enables the tracing of applications without
adversely affecting other running processes. We propose a system
utilizing a kernel view manager to provide each process with its
own view of kernel hookpoints, thereby eliminating eBPF tracing
overhead on processes that are untraced. Additionally, the system
has the potential for expansion, allowing for greater specialization

within the kernel and creating new opportunities for application
acceleration.

ACKNOWLEDGEMENT
This work is supported in part by NSF grant CNS-2236966.

REFERENCES
[1] 2024. android-profiler. https://developer.android.com/studio/profile/cpu-profiler.

(May 2024).
[2] 2024. aquasecurity. https://github.com/aquasecurity/tracee. (May 2024).
[3] 2024. bcc. https://github.com/iovisor/bcc. (May 2024).
[4] 2024. bpftrace. https://github.com/bpftrace/bpftrace. (May 2024).
[5] 2024. Cilium. (May 2024). https://cilium.io
[6] 2024. ftrace. https://www.kernel.org/doc/html/v4.17/trace/ftrace.html. (May

2024).
[7] 2024. HugeTLB Pages. https://docs.kernel.org/admin-

guide/mm/hugetlbpage.html. (May 2024).
[8] 2024. LSMBPF Programs. https://docs.kernel.org/bpf/prog_lsm.html. (May 2024).
[9] 2024. perf. https://perf.wiki.kernel.org/index.php. (May 2024).
[10] 2024. sysdig. https://github.com/draios/sysdig. (May 2024).
[11] 2024. systemtap. https://sourceware.org/systemtap/. (May 2024).
[12] 2024. systrace. https://developer.android.com/topic/performance/tracing. (May

2024).
[13] 2024. Tetragon. https://github.com/cilium/tetragon. (May 2024).
[14] Maximilian Bachl, Joachim Fabini, and Tanja Zseby. 2022. A flow-based IDS

using Machine Learning in eBPF. (2022). arXiv:cs.CR/2102.09980
[15] Sabur Baidya, Yan Chen, and Marco Levorato. 2018. eBPF-based content and

computation-aware communication for real-time edge computing. In IEEE INFO-
COM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 865–870. https://doi.org/10.1109/INFCOMW.2018.8407006

[16] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004.
Using Magpie for Request Extraction and Workload Modelling. In 6th Sym-
posium on Operating Systems Design & Implementation (OSDI 04). USENIX
Association, San Francisco, CA. https://www.usenix.org/conference/osdi-04/
using-magpie-request-extraction-and-workload-modelling

[17] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP ’09). Association for Computing Machinery, New York, NY, USA, 29–44.
https://doi.org/10.1145/1629575.1629579

[18] Andrew Begel, Steven McCanne, and Susan L. Graham. 1999. BPF+: exploiting
global data-flow optimization in a generalized packet filter architecture. SIG-
COMM Comput. Commun. Rev. 29, 4 (aug 1999), 123–134. https://doi.org/10.1145/
316194.316214

[19] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo. 2018.
Accelerating Linux Security with eBPF iptables. SIGCOMM ’18: Proceedings
of the ACM SIGCOMM 2018 Conference on Posters and Demos, 108–110. https:
//doi.org/10.1145/3234200.3234228

[20] Ashish Bijlani and Umakishore Ramachandran. 2019. Extension Framework for
File Systems in User space. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 121–134. https://www.usenix.org/
conference/atc19/presentation/bijlani

[21] Derek Bruening, Qin Zhao, and Saman Amarasinghe. 2012. Transparent dynamic
instrumentation. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments (VEE ’12). Association for Computing Machinery,
New York, NY, USA, 133–144. https://doi.org/10.1145/2151024.2151043

[22] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. 2004.
Dynamic Instrumentation of Production Systems. In 2004 USENIX Annual
Technical Conference (USENIX ATC 04). USENIX Association, Boston, MA.
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/
dynamic-instrumentation-production-systems

[23] Cyril Renaud Cassagnes, Lucian Trestioreanu, Clément Joly, and Radu State.
2020. The rise of eBPF for non-intrusive performance monitoring. NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium (2020), 1–7.
https://api.semanticscholar.org/CorpusID:219591293

[24] Young Eun Choe, Jun-Sik Shin, Seunghyung Lee, and Jongwon Kim. 2020.
eBPF/XDP Based Network Traffic Visualization and DoS Mitigation for Intelligent
Service Protection. 458–468. https://doi.org/10.1007/978-3-030-39746-3_47

[25] MIchael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch.
2014. The Mystery Machine: End-to-end Performance Analysis of Large-scale
Internet Services. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). USENIX Association, Broomfield, CO, 217–231. https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/chow

https://cilium.io
http://arxiv.org/abs/cs.CR/2102.09980
https://doi.org/10.1109/INFCOMW.2018.8407006
https://www.usenix.org/conference/osdi-04/using-magpie-request-extraction-and-workload-modelling
https://www.usenix.org/conference/osdi-04/using-magpie-request-extraction-and-workload-modelling
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/316194.316214
https://doi.org/10.1145/316194.316214
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3234200.3234228
https://www.usenix.org/conference/atc19/presentation/bijlani
https://www.usenix.org/conference/atc19/presentation/bijlani
https://doi.org/10.1145/2151024.2151043
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/dynamic-instrumentation-production-systems
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/dynamic-instrumentation-production-systems
https://api.semanticscholar.org/CorpusID:219591293
https://doi.org/10.1007/978-3-030-39746-3_47
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow


Eliminating eBPF Tracing Overhead
on Untraced Processes eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

[26] Jonathan Corbet. 2019. KRSI — the other BPF security module. (2019). https:
//lwn.net/Articles/808048/

[27] Jonathan Corbet. 2020. Kernel operations structures in eBPF.
https://lwn.net/Articles/811631/. (February 2020).

[28] Jonathan Corbet. 2021. eBPF seccomp() filters. https://lwn.net/Articles/857228/.
(May 2021).

[29] Jonathan Corbet. 2023. The extensible scheduler class.
https://lwn.net/Articles/922405/. (February 2023).

[30] Luca Deri. 2007. High-Speed Dynamic Packet Filtering. Journal of Network
and Systems Management 15, 3 (Sept. 2007), 401–415. https://doi.org/10.1007/
s10922-007-9070-0

[31] Luca Deri, Samuele Sabella, and Simone Mainardi. 2019. Combining System
Visibility and Security Using eBPF. In Italian Conference on Cybersecurity. https:
//api.semanticscholar.org/CorpusID:59616648

[32] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai Budiu, and Gloria Mainar-
Ruiz. 2012. Fay: Extensible Distributed Tracing from Kernels to Clusters. ACM
Trans. Comput. Syst. 30, 4, Article 13 (nov 2012), 35 pages. https://doi.org/10.
1145/2382553.2382555

[33] Mohamad Gebai and Michel R. Dagenais. 2018. Survey and Analysis of Kernel
and Userspace Tracers on Linux: Design, Implementation, and Overhead. ACM
Comput. Surv. 51, 2, Article 26 (mar 2018), 33 pages. https://doi.org/10.1145/
3158644

[34] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller.
2021. BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-
stack Processing. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). USENIX Association, 487–501. https://www.usenix.
org/conference/nsdi21/presentation/ghigoff

[35] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. 2004. gprof:
a call graph execution profiler. SIGPLAN Not. 39, 4 (apr 2004), 49–57. https:
//doi.org/10.1145/989393.989401

[36] Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2014.
FACE-CHANGE: Application-Driven Dynamic Kernel View Switching in a Vir-
tual Machine. In 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks. 491–502. https://doi.org/10.1109/DSN.2014.52

[37] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
data path: fast programmable packet processing in the operating system kernel.
In Proceedings of the 14th International Conference on Emerging Networking EX-
periments and Technologies (CoNEXT ’18). Association for Computing Machinery,
New York, NY, USA, 54–66. https://doi.org/10.1145/3281411.3281443

[38] Jibum Hong, Seyeon Jeong, Jae-Hyoung Yoo, and James Won-Ki Hong. 2018.
Design and Implementation of eBPF-based Virtual TAP for Inter-VM Traffic Mon-
itoring. In 2018 14th International Conference on Network and Service Management
(CNSM). 402–407.

[39] Kornilios Kourtis, Animesh Trivedi, and Nikolas Ioannou. 2020. Safe and Efficient
Remote Application Code Execution on Disaggregated NVM Storage with eBPF.
(2020). arXiv:cs.DC/2002.11528

[40] Hsuan-Chi Kuo, Akshith Gunasekaran, Yeongjin Jang, Sibin Mohan, Rakesh B.
Bobba, David Lie, and JesseWalker. 2019. MultiK: A Framework for Orchestrating
Multiple Specialized Kernels. CoRR abs/1903.06889 (2019). arXiv:1903.06889
http://arxiv.org/abs/1903.06889

[41] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the
Configuration for the Heart of the OS: On the Practicality of Operating System
Kernel Debloating. Proc. ACM Meas. Anal. Comput. Syst. 4, 1, Article 03 (may
2020), 27 pages. https://doi.org/10.1145/3379469

[42] Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin Mohan, and
Tianyin Xu. 2022. Verified programs can party: optimizing kernel extensions via
post-verification merging. In Proceedings of the Seventeenth European Conference
on Computer Systems (EuroSys ’22). Association for Computing Machinery, New
York, NY, USA, 283–299. https://doi.org/10.1145/3492321.3519562

[43] Chang Liu, Zhengong Cai, Bingshen Wang, Zhimin Tang, and Jiaxu Liu. 2020. A
protocol-independent container network observability analysis system based on
eBPF. 697–702. https://doi.org/10.1109/ICPADS51040.2020.00099

[44] Yu Luo, Kirk Rodrigues, Cuiqin Li, Feng Zhang, Lijin Jiang, Bing Xia, David Lion,
and Ding Yuan. 2022. Hubble: Performance Debugging with In-Production, Just-
In-Time Method Tracing on Android. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad,
CA, 787–803. https://www.usenix.org/conference/osdi22/presentation/luo

[45] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2016. Pivot Tracing: Dynamic
Causal Monitoring for Distributed Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association, Denver, CO. https://www.

usenix.org/conference/atc16/technical-sessions/presentation/mace
[46] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-

raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
2013. Unikernels: library operating systems for the cloud. In Proceedings of the
Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13). Association for Computing Ma-
chinery, New York, NY, USA, 461–472. https://doi.org/10.1145/2451116.2451167

[47] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma. 2024. Merlin: Multi-
tier Optimization of eBPF Code for Performance and Compactness. In Pro-
ceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 639–653. https:
//doi.org/10.1145/3620666.3651387

[48] Kathryn Mohror and Karen L. Karavanic. 2007. A study of tracing over-
head on a high-performance linux cluster. In Proceedings of the 12th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’07). Association for Computing Machinery, New York, NY, USA, 158–159.
https://doi.org/10.1145/1229428.1229465

[49] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-Guided Tracing. In 2019 IEEE Symposium on Security
and Privacy (SP). 787–802. https://doi.org/10.1109/SP.2019.00069

[50] V. Prasad, William Cohen, F. Eigler, M. Hunt, J. Keniston, and B. Chen. 2005.
Locating system problems using dynamic instrumentation. (01 2005).

[51] R. Sekar, H. Kimm, and R. Aich. 2024. eAUDIT: A Fast, Scalable and Deployable
Audit Data Collection System. In 2024 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, Los Alamitos, CA, USA, 90–90. https://doi.org/10.
1109/SP54263.2024.00087

[52] Farbod Shahinfar, Sebastiano Miano, Giuseppe Siracusano, Roberto Bifulco, Au-
rojit Panda, and Gianni Antichi. 2023. Automatic Kernel Offload Using BPF.
In Proceedings of the 19th Workshop on Hot Topics in Operating Systems (HO-
TOS ’23). Association for Computing Machinery, New York, NY, USA, 143–149.
https://doi.org/10.1145/3593856.3595888

[53] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google,
Inc. https://research.google.com/archive/papers/dapper-2010-1.pdf

[54] Johnson J. Thomas, Sebastian Fischmeister, and Deepak Kumar. 2011. Lowering
overhead in sampling-based execution monitoring and tracing. In Proceedings
of the 2011 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES ’11). Association for Computing Machinery, New York,
NY, USA, 101–110. https://doi.org/10.1145/1967677.1967692

[55] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leveraging
eBPF for programmable network functions with IPv6 segment routing. In Pro-
ceedings of the 14th International Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’18). ACM. https://doi.org/10.1145/3281411.3281426

[56] Stephen Yang, Seo Jin Park, and John Ousterhout. 2018. NanoLog: A Nanosecond
Scale Logging System. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, Boston, MA, 335–350. https://www.usenix.org/
conference/atc18/presentation/yang-stephen

[57] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan Mace.
2023. The Benefit of Hindsight: Tracing Edge-Cases in Distributed Systems.
In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 321–339. https://www.usenix.org/
conference/nsdi23/presentation/zhang-lei

[58] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan
Zhou. 2017. Log20: Fully Automated Optimal Placement of Log Printing State-
ments under Specified Overhead Threshold. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP ’17). Association for Computing Machinery,
New York, NY, USA, 565–581. https://doi.org/10.1145/3132747.3132778

[59] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan
Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf
Cidon. 2022. XRP: In-Kernel Storage Functions with eBPF. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX
Association, Carlsbad, CA, 375–393. https://www.usenix.org/conference/osdi22/
presentation/zhong

[60] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. 2023. Elec-
trode: Accelerating Distributed Protocols with eBPF. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 23). USENIX As-
sociation, Boston, MA, 1391–1407. https://www.usenix.org/conference/nsdi23/
presentation/zhou

https://lwn.net/Articles/808048/
https://lwn.net/Articles/808048/
https://doi.org/10.1007/s10922-007-9070-0
https://doi.org/10.1007/s10922-007-9070-0
https://api.semanticscholar.org/CorpusID:59616648
https://api.semanticscholar.org/CorpusID:59616648
https://doi.org/10.1145/2382553.2382555
https://doi.org/10.1145/2382553.2382555
https://doi.org/10.1145/3158644
https://doi.org/10.1145/3158644
https://www.usenix.org/conference/nsdi21/presentation/ghigoff
https://www.usenix.org/conference/nsdi21/presentation/ghigoff
https://doi.org/10.1145/989393.989401
https://doi.org/10.1145/989393.989401
https://doi.org/10.1109/DSN.2014.52
https://doi.org/10.1145/3281411.3281443
http://arxiv.org/abs/cs.DC/2002.11528
http://arxiv.org/abs/1903.06889
http://arxiv.org/abs/1903.06889
https://doi.org/10.1145/3379469
https://doi.org/10.1145/3492321.3519562
https://doi.org/10.1109/ICPADS51040.2020.00099
https://www.usenix.org/conference/osdi22/presentation/luo
https://www.usenix.org/conference/atc16/technical-sessions/presentation/mace
https://www.usenix.org/conference/atc16/technical-sessions/presentation/mace
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/3620666.3651387
https://doi.org/10.1145/3620666.3651387
https://doi.org/10.1145/1229428.1229465
https://doi.org/10.1109/SP.2019.00069
https://doi.org/10.1109/SP54263.2024.00087
https://doi.org/10.1109/SP54263.2024.00087
https://doi.org/10.1145/3593856.3595888
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1145/1967677.1967692
https://doi.org/10.1145/3281411.3281426
https://www.usenix.org/conference/atc18/presentation/yang-stephen
https://www.usenix.org/conference/atc18/presentation/yang-stephen
https://www.usenix.org/conference/nsdi23/presentation/zhang-lei
https://www.usenix.org/conference/nsdi23/presentation/zhang-lei
https://doi.org/10.1145/3132747.3132778
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/nsdi23/presentation/zhou
https://www.usenix.org/conference/nsdi23/presentation/zhou

	Abstract
	1 Introduction
	2 Tracing with eBPF
	2.1 Per-Process Tracing
	2.2 Overheads of Per-Process Tracing

	3 Per-Process Kernel Views for Per-Process Tracing
	3.1 Kernel View Manager
	3.2 Open Design Questions

	4 Beyond Tracing
	5 Related Works
	5.1 Mitigating Tracing Overhead
	5.2 Multiple Kernel Views

	6 Conclusion
	References

